
Vacuum Technology

www.totalvac.co.kr www.titanvac.com www.totalvac.co.kr www.titanvac.com

Vacuum Technology

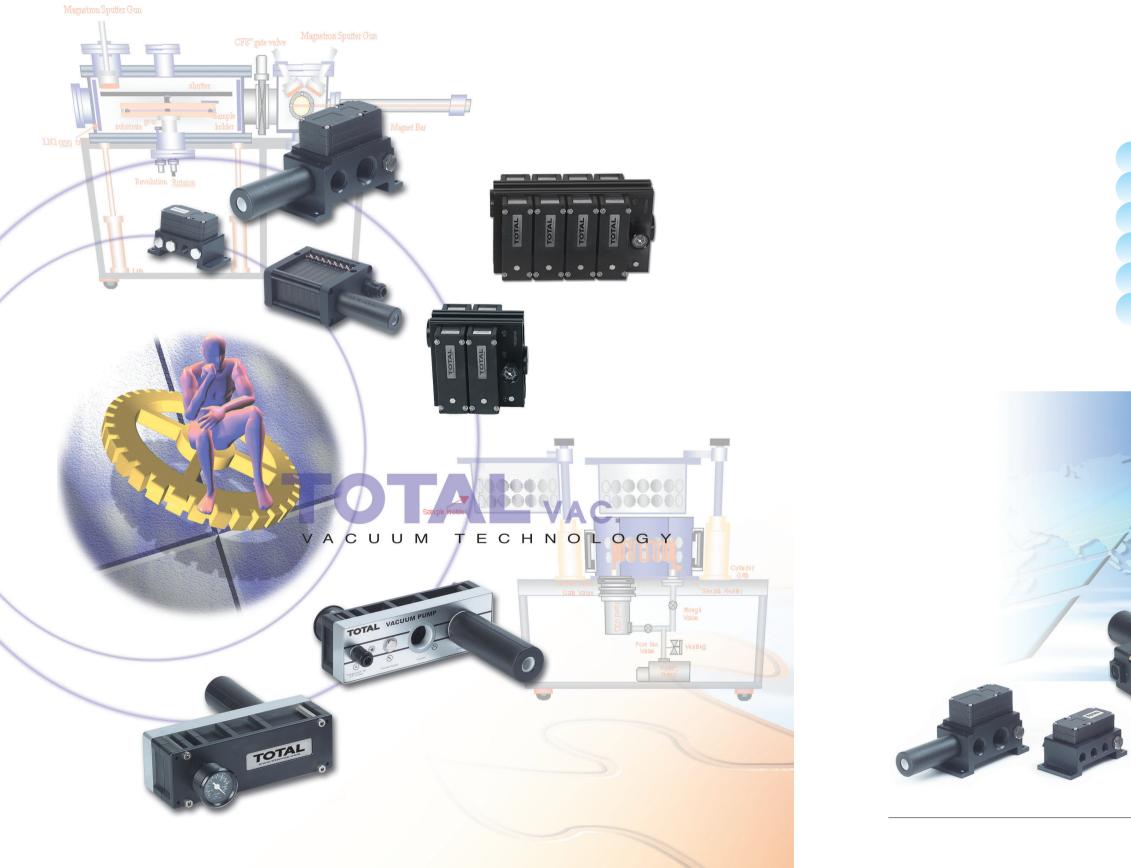
TOTAL Vac. USA Co.

7685 Haven Ave. #C Rancho Cu camonga , CA 91730 USA TEL : 818 - 441 - 2079 FAX : 909 - 989 - 2027

www.totalvac.co.kr www.titanvac.com

Table of Contents

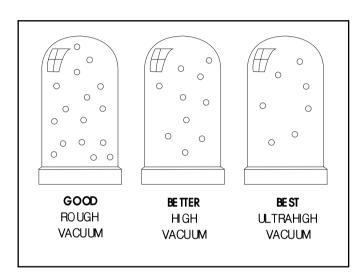
Chap.				
1	••••	• • • • • • • • • •	Vacuum Technical Informa	
•	1) 2)		um? ·····	
	2) 3)	Negative Pre	ssure Conversions	8
	4)	Flow Convers	sions ·····	9
	5) 6)		Correct Vacuum Pump	10
	07	& How to Sel	ect the Right Vacuum Pad Size	11
Chap.				
2	••••		Air driven vacuum pu	
4	1)	The Principle	of TOTAL Multi-Stage Vacuum Pump	14
	2) 3)	The Advantage Flow Diagram	ges of TOTAL Vacuum Pumps	16
Chan	07	riow Dagian		
Chap.			····· Vacuum Pur	nps
3	1)	TCVM/X	: Mini Chip Type	
	2)	TCVM/X-D1	: Mini Duplex Type	30
	3)	TCVM/X-D2	: Mini Duplex Type	35
	4)	TCVM/X-CB	: Mini Base Block Type	41
	5)	TCVM/X-SM	: Mini Multiple Stack Type	46
	6)	TVL	: Normal Low Vacuum Standard Type	52
	7)	TVM	: Normal Medium Vacuum Stan dard Type ······	60
	8)	TVH	: Normal High Vacuum Standard Type	69
	9)	T2MM	: High Flow Medium Vacuum Type	76
	10)	T2MX	: High Flow Extra Vacuum Type	···· 78
	11)	T2HX	: High F low High Vacuum Type ·····	
	12)	T2ML-D1/D2	(U) : Low Vacuum Unification Type ······	84
	13)	T2MM-D1/D	2(U) : Normal Medium Vacuum Unification Type·····	94
	14)	T2MX-D1/D2	2(U) : Extra Vacuum Unification Type	104


Chap. Δ 1) What's Suction Cup? 2) The Principle of Suction Cup 3) Energy Requirements 4) Vacuum Pad Size Selection 5) Suction Cup's Lifting Force Calculation 6) General Suction Cup (F, U Type)'s Lifting 7) Basic Model's Characteristics 8) Accessories Use & Application 9) Suction Oup's Material Resource and F 10) How to Select the Right Suction Cup ... 11) Characteristics of Models 1 Model TU Type ② Model TF Type ③ Model TOC Type ④ Model TB Type (5) Model TD Type 6 Model TBL Type ⑦ Model TFC Type ⑧ Model TP Type (9) Custom-Designed Pad 1 Level Spring & Ball Joint Chap. Accessories & Chemical Resistance Data 1) Accessories 1 Vacuum Switch ② Vacuum Gauge ③ Vacuum Solenoid Valve (4) Vacuum & Air Energy Saving Kit 5 Vacuum-Controlled Valve **6** Vacuum Filter ⑦ Ball Joint & Level Compensator ⑧ Silencer Chap. 6 1) Application Chap. 1) Web Site: www.totalvac.co.kr (Internet 2) Vacuum Pump System Design and Tec 3) A/S Center

4) Warranty

•••••• Su	ction Cups
n	
ting Force	
Features	

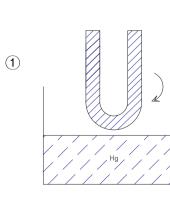
	204
Appli	cation
	206
Customer Supporting	Center
Consulting, Resource Support)	214
hnical Support	
	214
	214



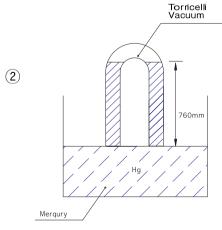
Vacuum Technical Information

	5
1) What 's Vacuum?	6
2) Torricelli 's Experimental	7
3) Negative Pressure Conversions	8
4) Flow Conversions	9
5) Choosing the Correct Vacuum Pump	11
6) Suction Cup Lifting Force Calculation & How to Select the Right Vacuum Pad Size	

1) What's Vacuum?

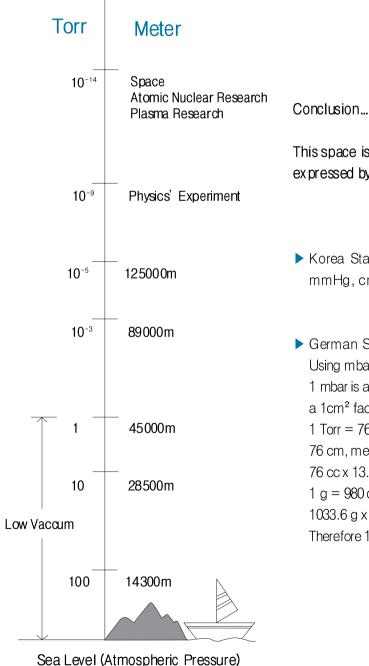


In general, the answer to this question is "The space in which none of molecules are existed"


This is so theoretical review. In the certain space, as the number of molecules is decreased, it's pressure becomes lower than the atmospheric pressure. This is caused by the movement of outer molecules to fill in the space.

Therefore, the principle of vacuum in industry is "artificial space to maintain lower pressure than the atmospheric pressure." To make this space, we use vacuum pump, vacuum generator and so on. We hope the principle of vacuum generator and examples in this catalog can be a great help to you.

2) Torricelli's Experimental


Put the test tube which is fully filled with mercury upside down in mercury tub.

The certain space is appeared as mercury stopped at 760 mm from the surface of mercury tub. Vacuum is made in the top of the test tube.

The cautions of experiment

- 1 Be sure to thoroughly close the test tube which is fully filled with mercury before putting mercury tub.
- 2 Measure exactly the distance between the surface of the mercury tub and the marked line of test tube.

This space is called "Torricelli Vacuum", and it is expressed by 760 mmHg.abs (29.9"Hg).

▶ Korea Standard (KS)'s unit. Torr is the same with mmHg, cmHg, and inHg.

German Standard (DIN) Using mbar.abs, mbar.G. 1 mbar is a pressure unit as 1,000 dyne force to a 1cm² face. 1 Torr = 76 cmHg76 cm, mercury's volume = 76 cc $76 \text{ cc} \times 13.6 \text{ (gravity of mercury)} = 1.033.6 \text{ g}$ 1 g = 980 dyne, 1033.6 g x 980 dyne = 1,012,928 dyne = 1,013.3 mbar, Therefore 1,013.3 mbar, that is, 1 Torr = 1,013.3 mbar

3) Negative Pressure Conversions

	mbar (hpa)	bar	Pa (Nm⁻²)	kpa	kgf cm⁻²(at)
1 mbar (hpa)	1	1×10 ⁻³	10 ²	0.1	1.02×10 ⁻³
1 bar	10 ³	1	1×10 ⁵	100	1.02
1 Pa (Nm²)	0.01	1×10 ⁻⁵	1	0.001	1.02×10 ⁻⁵
1 kPa	10	0.01	103	1	1.02×10 ⁻²
1 atm	1.013×10 ³	1.013	1.013×10 ⁶	1.013×10²	1.033
1 kg cm² (at)	9.807×10 ²	0.981	9.807×10 [±]	98.07	1
1 mmH₂O	9.807×10 ⁻²	9.807×10 ⁻⁵	9.807	9.807×10 ⁻³	10 ⁻⁴
1 Torr (mmHg)	1.333	1.333×10⁻³	1.333×10²	1.333×10⁻¹	1.36×10 ⁻³
1 micron	1.333×10 ⁻³	1.333×10 ⁻⁶	1.333×10 ⁻¹	1.333×10 ⁻⁴	1.36×10 ⁻⁶
1 in Hg	33.86	3.386×10-2	3.386×103	3.386	3.453×10-2
1 in H₂O	2.491	2.491×10⁻³	2.491 ×10²	0.249	2.54×10⁻³
1 lbf in ⁻² (psi)	68.95	6.895×10-2	6.895×103	6.895	7.03×10-2

	mmH₂O	Torr (mmHg)	in Hg	in H₂O	lbf in⁻² (psi)
1 mbar (hpa)	10.197	0.75	2.953×10 ⁻²	0.402	1.45×10 ⁻²
1 bar	1.02×10⁴	7.5×10 ²	29.53	1.015×10 ²	14.5
1 Pa (Nm²)	0.102	7.5×10 ⁻³	2.953×10 ⁻⁴	4.015×10 ⁻³	1.45×10 ⁻⁴
1 kPa	1.02×10 ²	7.5	0.295	4.015	0.145
1 atm	1.033×10 [°]	7.6×10 ²	29.92	4.068×10 ²	14.7
1 kg cm ⁻² (at)	104	7.356×10²	28.96	3.973×10²	14.22
1 mmH ₂ O	1	7.354×10-2	2.896×10⁻³	3.394×10-2	1.42×10-3
1 Torr (mmHg)	13.29	1	3.937×10⁻²	0.535	1.934×10-2
1 micron	1.359×10 ⁻²	10-3	3.937×10⁻⁵	5.35×10 ⁻⁴	1.934×10-5
1 in Hg	3.45×10²	25.4	1	13.6	0.491
1 in H₂O	25.4	1.868	7.356×10-2	1	3.613×10 ⁻²
1 lbfin ^{-₂} (psi)	7.03×10²	51.71	2.036	27.68	1

▶ Unit conversion (760 Torr = 1,013 mbar = 29.92 inch Hg) $29.92-2.953 \times 10^{-2} \times P \text{ (mbar abs)} = \triangle P \text{ (inch Hg)}$ $1,013-33.76 \times \triangle P$ (inch Hg) = P (mbar abs)

4) Flow Conversions

	m³/h	m³/min	m³/s
1m³∕h	1	1.667×10 ⁻²	2.778×10 ⁻⁴
1m³/min	60	1	1.667×10 ⁻²
1m³∕s	3600	60	1
1ℓ/min	6×10-2	10-3	1.667×10⁻⁵
1 cfm (ft³min⁻¹)	1.699	2.832×10 ⁻²	4.72×10 ⁻⁴
1 gal/min	0.227	0.378	6.306×10 ⁻⁵

	ℓ /min	cfm (ft³min⁻¹)	gal / min
1m³∕h	16.67	0.588	4.403
1m³∕min	10 ³	35.28	2.642×10 ²
1m³/s	6×10 ⁴	2.117×10 ³	1.585×10 ⁴
1ℓ/min	1	3.528×10 ⁻²	0.264
1 cfm (ft³min⁻¹)	28.32	1	7.481
1 gal/min	3.784	0.133	1

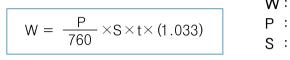
5) Choosing the Correct Vacuum Pump

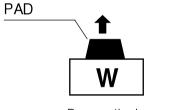
- ① The size of vacuum pump is represented by suction flow when pump's vacuum level is the same with the atmospheric pressure.
- ⁽²⁾ Suction flow is also called by open flow. The units are LPM (ℓ /min). CFM (cubic foot per minute). M^{3}/hr (cubic meter per hour), etc. And by this basis, motor's power is decided in the electric motor type.
- ③ The 3 (three) important things when selecting vacuum pump. The first, suction flow (open flow: ℓ /min) or horse power (Hp: Kw). The second, working vacuum range as mmHg.G, Torr. The third, application.

$$S = 2.303 \frac{V}{T} \log \frac{P_1}{P_2}$$

$$S = 2.303 \frac{V}{T} \log \frac{V}{P_1}$$

$$S = 2.303 \frac{V}{P_1}$$


- ④ These factors are applied in the same way to our air-driven vacuum pump: Multi-stage vacuum ejector. So to speak, you can select the right model by the volume of open flow based on the below formula.
- (5) Example: Suppose you want to lift and move 100 kg of furniture in the plant. When we have total 64 ℓ of the vacuum container with vacuum pipe, 90 Torr (670 mmHg.G) of the working vacuum level, and we can spend 12 seconds to evacuate, please calculate the required vacuum pump's size.


$$S = 2.303 \frac{64}{0.2} \log \frac{760}{90} = 683 \ell /min$$

At this time, we didn't consider the pipe flow resistance, leakage, valve resistance, working temperature, vacuum pad's size, and so on, and will mention about the vacuum pad's size in the next page.

6) Suction Cup Lifting Force Calculation & How to Select the Right Vacuum Pad Size

1 Lifting force formula

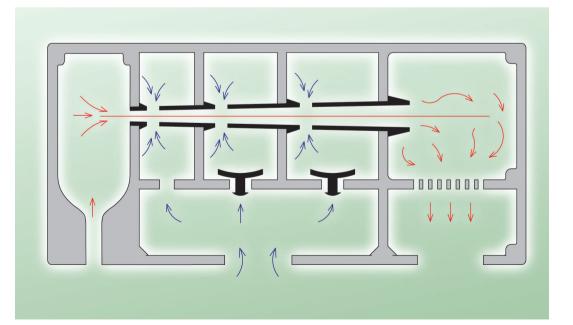
Perpendicular

Horizontal

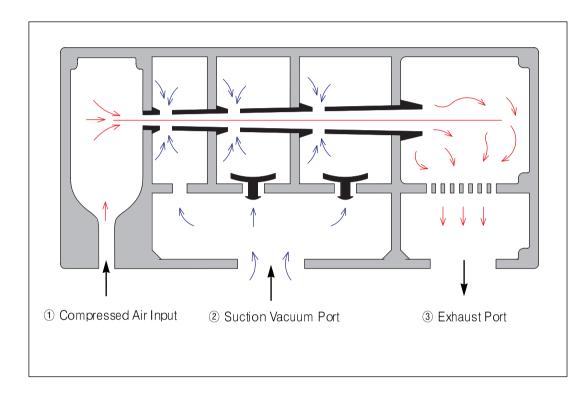
(2) The equation for vacuum pad size (\emptyset)

s : Number of suction cups

W: Lifting force(kgf) P : Vacuum level(mmHg) S : The size of vacuum pad / vacuum pad area(cm²) t : Perpendicular safety factor (1/2)Parallel / Horizontal safety factor (1/4)



- D: Diameter of vacuum pad
- m : Mass (kg)
- u : Vacuum level (-kPa)
- n : Safety factor (Generally 2)


The Prin
 The Adv
 Flow Dia

	14	
nciple of TOTAL Multi-Stage Vacuum Pump	15	
vantages of TOTAL Vacuum Pumps	16	
agram		

1) The Principle Total Multi-Stage Vacuum Pump

Using only compressed air produced by compressor, this TOTAL "multi-stage ejector" that can get up to -100.8 kPa, plays a revolutionary role in the various vacuum automotive industry.

The operating principle described above, putting compressed air into compressed air input (①), it is finally put out to exhaust port (③). At this time, each nozzle makes "Venturi-Effect" , and each chambers of nozzles produce vacuum. Also each chamber has a flap valve to check one another's different vacuum levels and integrate vacuum for sucking in through suction vacuum port (2)

The TOTAL vacuum pump uses minimum amount of compressed air to achieve high suction flows for maximum (about 1:3) vacuum levels, and makes an epoch by playing a role of electric motor driven vacuum pumps and also in industrial vacuum systems.

2) The Advantages of TOTAL Vacuum Pumps

(Multi-Stage Vacuum Ejector Type)

	Characteristics
1	Max. – 100.8 kPa vacuum level
2	Only using the compressed air
3	High efficiency, fast response
4	Small size & low weight
5	Easy to install & require minimal service
6	Low noise level
7	No heat emission
8	Novibrations
9	No oil mist
10	Suction flow per air consumption rate is high. Very economical
11	Energy saving kit

ΤΟΤΔΙ VACUUM VAC. TECHNOLOGY

Remarks

Replace motor driven vacuum pump

No need to use electricity. Can be used in radioactive place

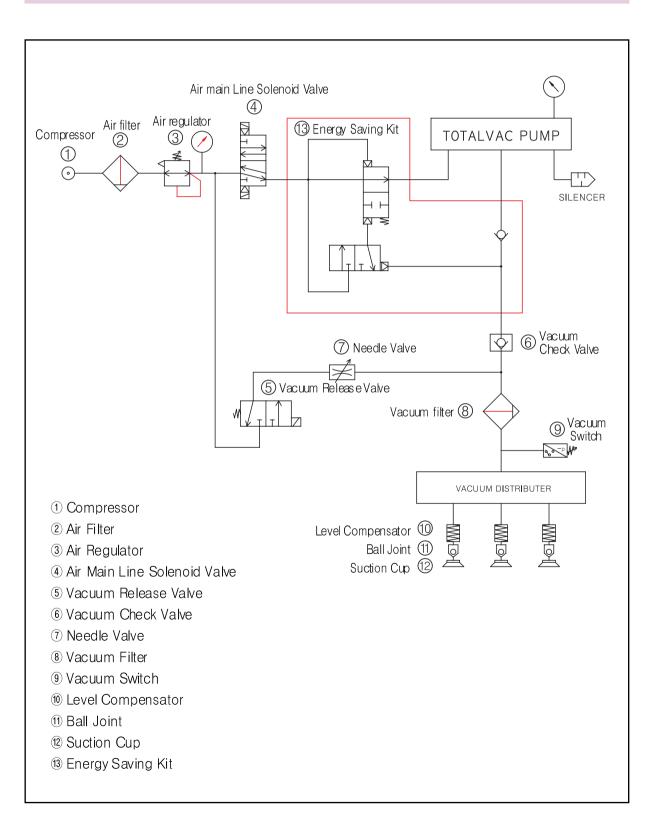
Possible to save air consumption. Short evacuation time to save the working period

Very easy to equip inside the system machine

A/S not necessary. Warranty for customer

53 dBA~65 dBA Compared with the other same flow pump, almost no noise

-20°C~+80°C (-4°F~+176°F) Possible to use in any temperature within this range. Always maintain normal temperature in working


Increase the precision of working due to novibration

Only use filter & regulator (No lubricator use)

Multi-stage nozzle About 3 times more than single type (Air: 1, Suction: 3)

Automatically control air according to working vacuum levels

3) Flow Diagram

TOTAL VACUUM PUMP

Multi-stage ejector vacuum pump using compressed air (3.5~6.2 bar), there are various models of L, M, X, H and so on by vacuum level.

(1) Compressor:

A device that compresses a gas, especially air, by raising its pressure and decreasing its volume. In general, it is a compressed air line in the field.

② Air Filter:

A device that removes dust and other small particles from compressed air.

③ Air Regulator:

A device that controls the pressure of compressed air.

(4) Air Main Line Solenoid Valve

A device that controls the supply, close, and direction changing of compressed air, generated by vacuum generator (vacuum pump).

5 Vacuum Release Valve

A device that guickly and completely removes vacuum, left in the line right after stopping vacuum pump. (For speedy working process)

6 Vacuum Check Valve

A device that protects breaking vacuum while working.

(7) Needle Valve

A device that controls air pressure and flow of vacuum breaking line.

(8) Vacuum Filter

A material that filters small particles in internal vacuum pump and stops various and strange materials through vacuum port

(9) Vacuum Switch

There are pneumatic (mechanical) or electronic controlled models. A device that maintains the proper and consistent vacuum level and sends necessary signal to control

10 Level Compensator

A device that adjusts differences in heights of the objects to be handled to provide a certain degree of shock absorption.

11 Ball Joint

A device that enables pad to be adjusted when a degree of angular compliance is required.

⁽¹²⁾ Suction Cup

A final part which transfers vacuum force to the objects to be handled. There are various models depending on figures, surface, material, wear resistance, and temperature of objects to be handled.

③ Energy Saving Kit

A device that saves compressed air by cutting unnecessary air consumption. Cut compressed air when vacuum level is higher than a certain degree of it which intentionally is made by vacuum switch, and supply compressed air again if vacuum level is below of it.

- 1) TCVM/X
- 2) TCVM/X
- 3) TCVM/X
- 4) TCVM/X
- 5) TCVM/X
- 6) TVL: Nor
- 7) TVM: No
- 8) TVH: No
- 9) T2MM: H
- 10) T2MX:
- 11) T2HX: I
- 12) T2ML-D
- 13) T2MM-
- 14) T2MX-I

Air-Driven Vacuum Pump

	20
(: Mini Chip Type	30
(-D1: Mini Duplex Type	35
C-D2: Mini Duplex Type	41
C-CB: Mini Base Block Type	46
(-SM: Mini Multiple Stack Type	52
rmal Low Vacuum Standard Type	60
ormal Medium Vacuum Standard Type	69
ormal High Vacuum Standard Type	75
High Flow Medium Vacuum Type	75
High Flow Extra Vacuum Type	81
High Flow High Vacuum Type	84
D1/D2 (U): Low Vacuum Unification Type	94
D1/D2 (U): Normal Medium Vacuum Unification Type	104
D1/D2 (U): Extra Vacuum Unification Type	

1) TCVM/X: Mini Chip Type

Equipped with multi-stage nozzle, realize the max. vacuum flow by the min. air supply. Can save energy 2(two) times more than the current single nozzle pumps.

► Use of Application - vacuum lifting Device, vacuum packaging/cartonning, valve leakage inspection, semiconductor, pharmaceutical reactor, other manufacturing automation

Performance and Specifications Outline

Max. Vacuum Level	Max. 645 (mmHg.G) Max. –25.40 (inHg) Max. –86 (kPa)
Max. Vacuum Flow	Max. 36~215 (N. l /min) Max. 1.271~7.592 (scfm)
Supply Air Condition	Compressed Air
Compressed Air Pressure	4~6.2 bar (Max. 6.2 bar) 58.01~89.92 psi
Working Temperature	-20℃~+80℃ -4°F~+176°F
Noise Level	51~68 dBA

Ordering Information

TCVM	5, 10, 20, 30		-A, B, C	N	Option
Total Chin Tuna		Pump's Size Open Flow)	Base Type	Seal Material	Vacuum S/W & Others
Total Chip Type Vacuum Pump	5	36 (<i>l</i> /min) 1.271 (scfm) 72 (<i>l</i> /min)	A: Airin (M5) B: Airin (1/8″)	(Check V/V – basic installed)	-None : Standard
(Medium Vacuum)	10 20	2.542 (scfm) 144 (<i>l</i> /min) 5.085 (scfm)	Exhaust: internal silencer C: Airin (1/8″)	N : Nitrile V: Viton	
	30	215 (ℓ/min) 7.592 (scfm)	Exhaust: 3/8″ external silencer	E: EPDM	

20 TOTAL VAC.

TCVM Series: Mini Chip Type

Characteristics / Medium Vacuum

Pump	Max.	Max.	Air	Neter	Net	Pipe Arrangement (\emptyset)			
Model	Vacuum (mmHg · G) (-inHg) (-k Pa)	Vacuum Flow (Nℓ/min) (scfm)	Consumption (Nℓ/min) (scfm)	Noise Level (dBA)	Weight (g) (oz)	Compressed Air (mm) (inches)	Vacuum (mm) (inches)	Exhaust (mm) (inches)	
TCVM5-A		36 1.271	15~22 0.530~0.777	57~68	26 0.917	>2 0.08″	>5.2 0.20″	>8 0.32″	
TCVM5-B		36 1.271	15~22 0.530~0.777	57~64	33 1.164	>2 0.08″	>5.2 0.20″	>8 0.32″	
TCVM5-C		36 1.271	15~22 0.530~0.777	52~62	44 1.552	>2 0.08″	>5.2 0.20″	>8 0.32″	
TCVM10-A	645	72 2.542	30~42 1.059~1.483	57~68	26 0.917	>2 0.08″	>8 0.32″	>10 0.39″	
TCVM10-B	25.39	72 2.542	30~42 1.059~1.483	57~64	33 1.164	>2 0.08″	>8 0.32″	>10 0.39″	
TCVM10-C	86	72 2.542	30~42 1.059~1.483	52~65	44 1.552	>2 0.08″	×8 0.32″	>10 0.39″	
TCVM20-B		144 5.085	60~84 2.119~2.966	61~69	44 1.552	>4 0.16″	>10 0.39″	3/8″	
TCVM20-C		144 5.085	60~84 2.119~2.966	61~69	55 1.940	>4 0.16″	≻10 0.39″	3/8″	
TCVM30-C		215 7.592	90~107 3.178~3.778	61~69	66 2.330	≻6 0.24″	>12 0.47″	3/8″	

Vacuum flow in (N l /min) (scfm) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

Vacuum Level		Vacuum Flow (N / /min) (scfm)								
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90
TCVM5	36 1.271	25 0.883	15 0.530	13 0.459	10 0.353	8 0.282	5.7 0.201	2.4 0.085	0.70 0.025	
TCVM10	72 2.542	47 1.660	30 1.059	27 0.953	20 0.706	16 0.565	11.8 0.417	4.8 0.169	1.32 0.047	
TCVM20	144 5.085	97 3.425	60 2.119	49 1.730	39 1.377	31 1.095	22.4 0.791	9.7 0.343	2.60 0.092	
TCVM30	215 7.592	146 5.155	93 3.284	74 2.613	60 2.119	46 1.624	31.2 1.102	16 0.565	4.00 0.141	
TCVM5: A, B, C	A, B, Ctype available TCVM20: B, Ctype available									
TCVM10: A, B,	TCVM10: A, B, C type available TCVM30: only C type (external silencer) available									

TCVX Series: Mini Chip Type

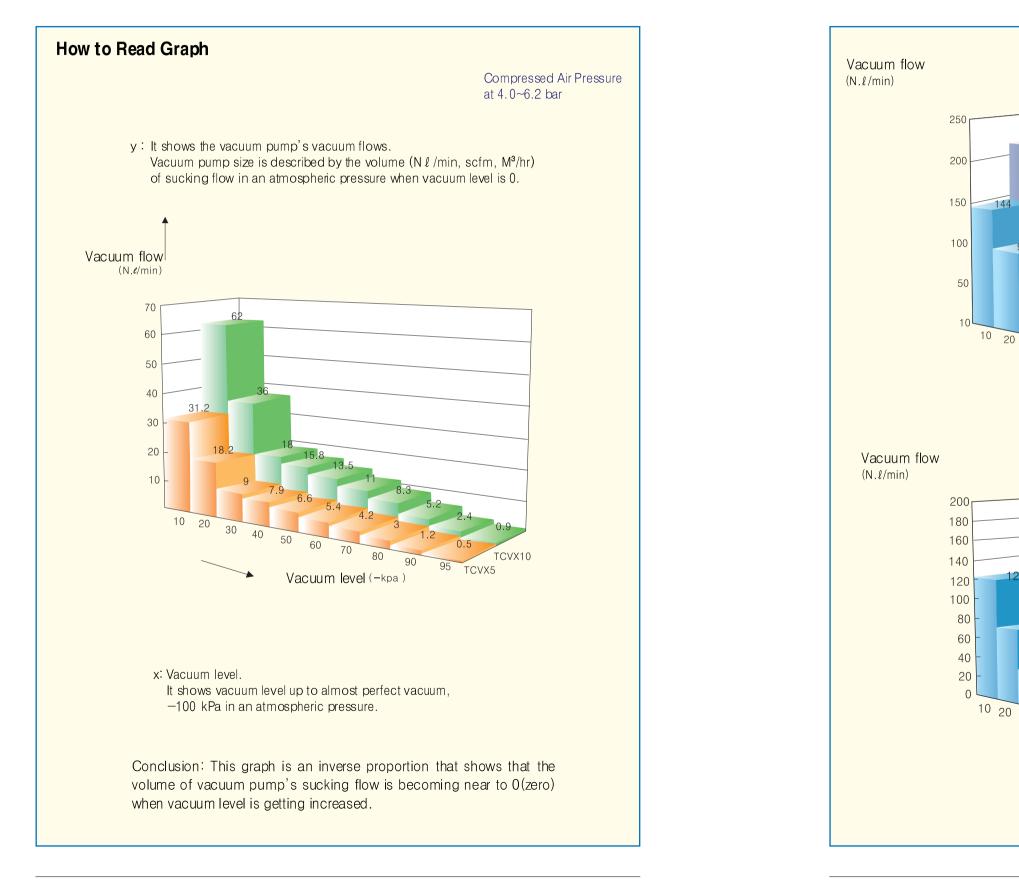
Characteristics / Extra Vacuum

Pump	Max.	Max.	Air	Mataz	Net	Pipe Arrangement (\varnothing)				
Model	Vacuum (mmHg · G) (-inHg) (-kPa)	Vacuum Flow (Nℓ/min) (scfm)	Consumption (N l/min) (scfm)	Noise Level (dBA)	Weight (g) (oz)	Compressed Air (mm) (inches)	Vacuum (mm) (inches)	Exhaust (mm) (inches)		
TCVX5-A		31.2 1.102	21.6~24.3 0.763~0.858	61~66	26 0.917	>2 0.08″	>5.2 0.20″	>8 0.32″		
TCVX5-B		31.2 1.102	21.6~24.3 0.763~0.858	58~65	33 1.164	>2 0.08″	>5.2 0.20″	>8 0.32″		
TCVX5-C		31.2 1.102	21.6~24.3 0.763~0.858	52~62	44 1.552	>2 0.08″	>5.2 0.20″	>8 0.32″		
TCVX 10-A	712.5	62 2.189	43.2~48.6 1.525~1.716	62~66	26 0.917	>2 0.08″	>8 0.32″	>10 0.39″		
TCVX 10-B	28.05	62 2.189	43.2~48.6 1.525~1.716	60~66	33 1.164	>2 0.08″	>8 0.32″	>10 0.39″		
TCVX 10-C	95	62 2.189	43.2~48.6 1.525~1.716	52~62	44 1.552	>2 0.08″	>8 0.20″	>10 0.39″		
TCVX20-B		123 4.343	86.4~97 3.051~3.425	60~66	44 1.552	>4 0.16″	>10 0.39″	3/8″		
TCVX20-C		123 4.343	86.4~97 3.051~3.425	52~64	55 1.940	>4 0.16″	>10 0.39″	3/8″		
TCVX30-C		184 6.497	130~145 4.590~5.120	52~64	66 2.33	>6 0.24″	>12 0.47″	3/8″		

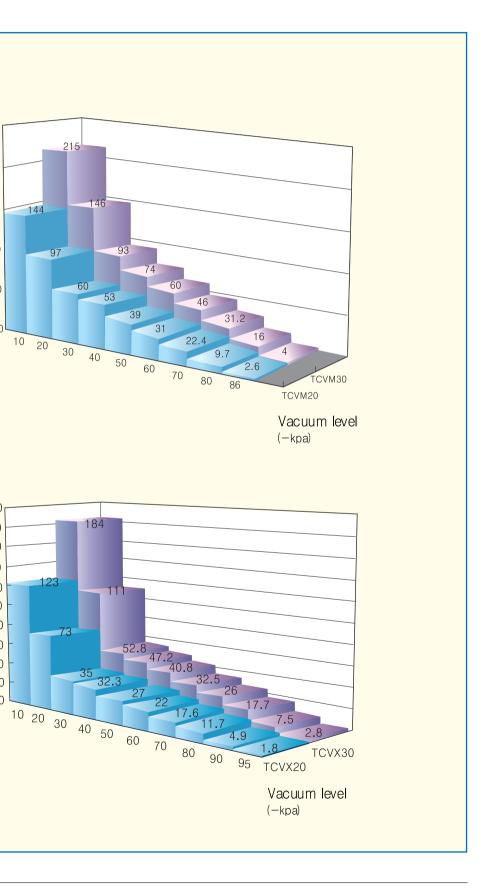
Vacuum flow in (N ℓ /min) (scfm) at different vacuum levels (mmHg \cdot G) (-inHg) (-kPa)

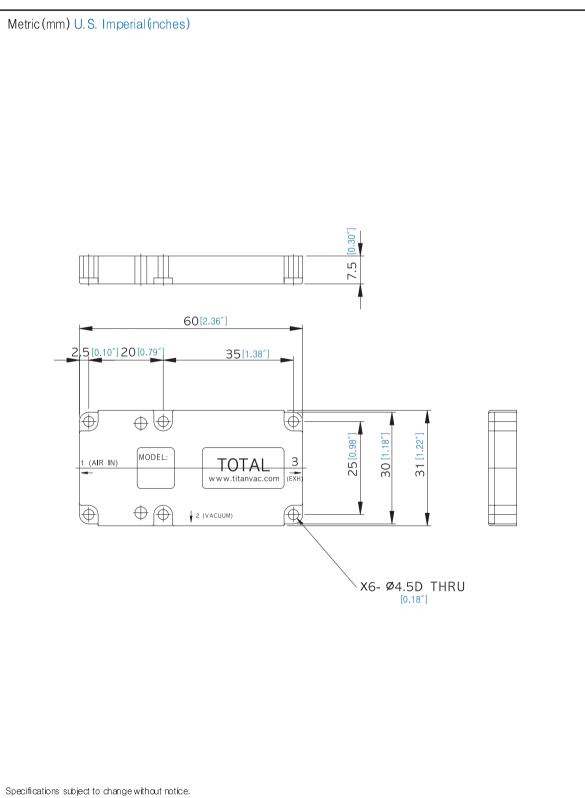
Vacuum Level		Vacuum Flow (N & /min) (scfm)								
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90
TCVX5	31.2	18.2	9	7.9	6.6	5.4	4.2	3	1.2	0.5
	1.102	0.643	0.318	0.279	0.233	0.191	0.148	0.106	0.042	0.018
TCVX 10	62	36	18	15.8	13.5	11	8.3	5.2	2.4	0.9
	2.189	1.271	0.636	0.558	0.477	0.388	0.293	0.184	0.085	0.032
TCVX20	123	73	35	32.3	27	22	17.6	11.7	4.9	1.8
	4.343	2.578	1.236	1.141	0.953	0.777	0.621	0.413	0.173	0.064
TCVX30	184	111	52.8	47.2	40.8	32.5	26	17.7	7.5	2.8
	6.497	3.919	1.864	1.667	1.441	1.148	0.918	0.625	0.265	0.099

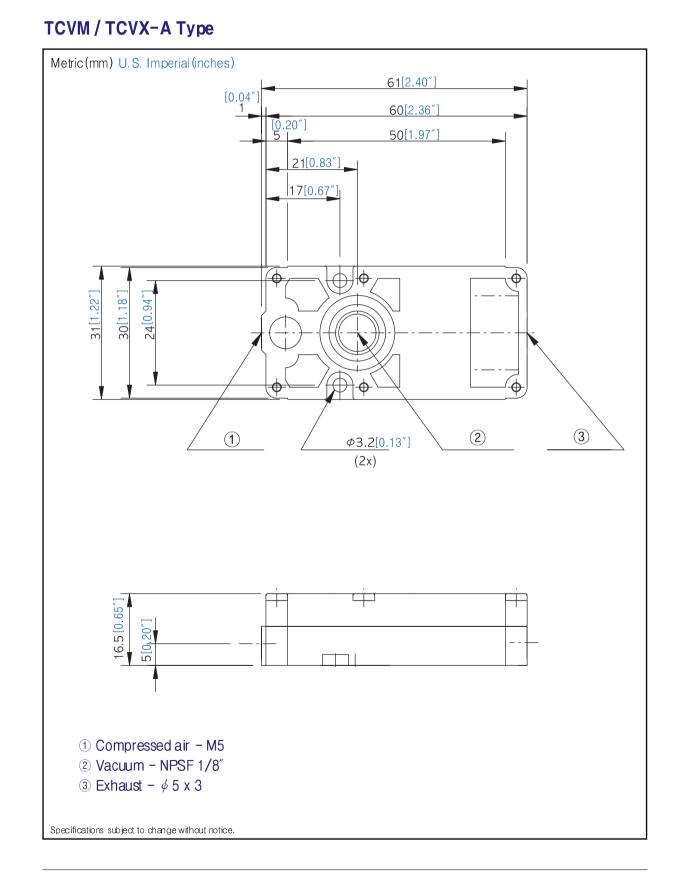
TCVX5: A, B, C type available TCVX20: B, C type available


TCVX10:A, B, C type available TCVX30: only C type (external silencer) available

Time to evacuate a volume (sec/ ℓ) (sec/cf) at different vacuum levels (mmHg · G) (-inHg) (-kPa)


Vacuum Level				Evacuat	ion Time	e (sec/ ℓ)	(sec/cf)			
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90
TCVM5	0	0.200 5.660	0.660 18.777	1.300 36.400	1.690 47.658	2.720 76.704	4.400 122.320	6.500 179.400	12.900 363.780	-
TCVM10	0	0.120 3.396	0.280 7.966	0.580 16.240	0.810 22.842	1.220 34.404	1.840 51.152	2.880 79.488	5.320 150.024	-
TCVM20	0	0.062 1.755	0.150 4.268	0.270 7.560	0.420 11.844	0.630 17.766	0.910 25.298	1.400 38.640	2.620 73.884	_
TCVM30	0	0.041 1.160	0.112 3.186	0.188 5.264	0.316 8.911	0.455 12.831	0.654 18.181	1.020 28.152	1.980 55.836	_
TCVX5	0	0.270 7.641	0.820 23.329	1.540 43.120	2.600 73.320	3.650 10.298	4.930 137.054	7.000 193.200	10.800 304.560	_
TCVX 10	0	0.130 3.679	0.410 11.665	0.770 21.560	1.240 34.968	1.840 51.888	2.510 69.778	3.520 97.152	5.900 166.380	_
TCVX20	0	0.068 1.924	0.220 6.259	0.390 10.920	0.620 17.484	0.940 26.508	1.250 34.750	1.750 48.300	2.600 73.320	_
TCVX30	0	0.048 1.358	0.161 4.580	0.288 8.064	0.464 13.085	0.680 19.176	0.942 26.188	1.300 35.880	1.910 53.862	3.800 107.730

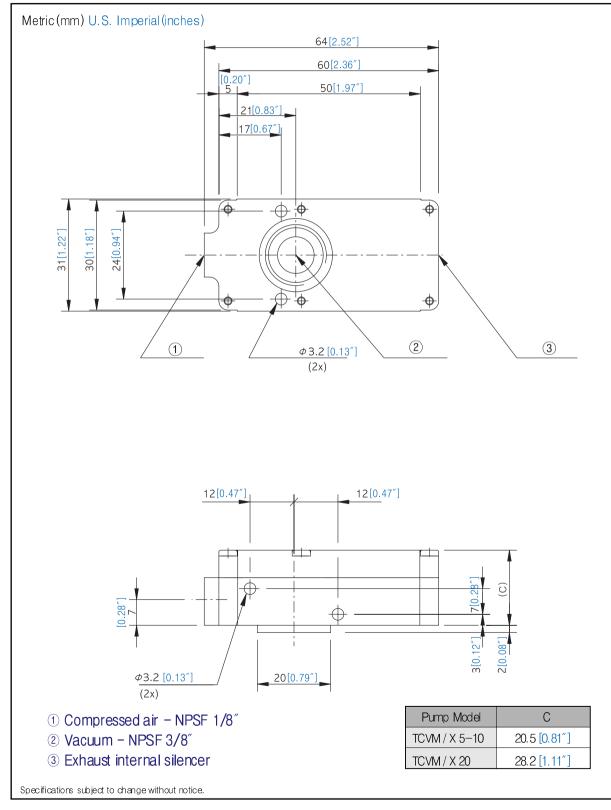

TOTAL VACUUM TECHNOLOGY VAC.

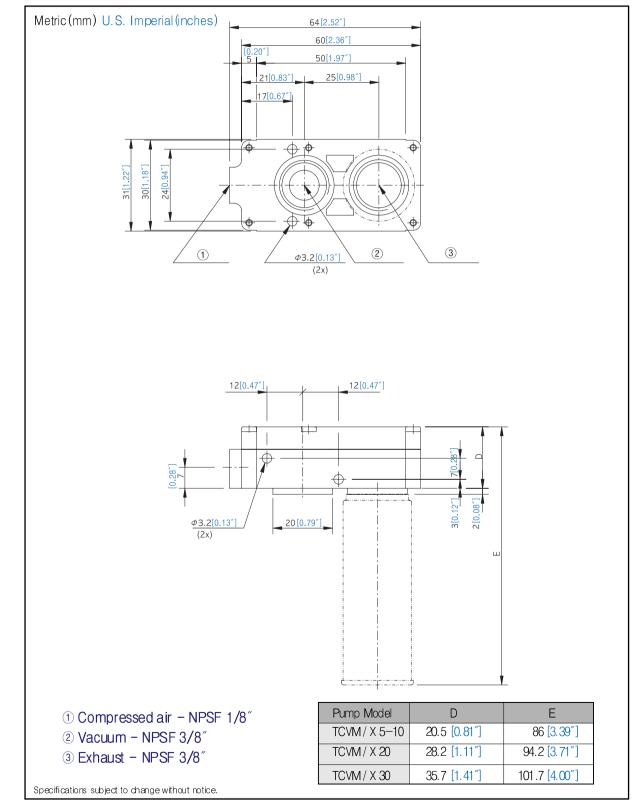


30 40 50

184

Mini Chip Type




26 TOTAL VAC.

TOTAL VACUUM TECHNOLOGY

TCVM / TCVX-B Type

TCVM / TCVX-C Type

Vacuum Pumps

2) TCVM/X-D1: Mini Duplex Type

Mini chip type of pumps in the aluminum connection plate for multiple connections to maximize workability and reliability.

Performance and Specifications Outline

Max. Vacuum Level	Max. 645.16 ~ 712.68 (mmHg.G) Max86 ~ -95 (kPa) Max25.40 ~ -28.06 (inHg)
Max. Vacuum Flow	Max. 216 (N ℓ /min) Max. 7.627 (scfm)
Supply Air Condition	Compressed Air
Compressed Air Pressure	4~6.2bar 58.01~89.92 psi
Working Temperature	-20°C~+80°C -4°F~+176°F
Noise Level	57~65 dBA

Ordering Information

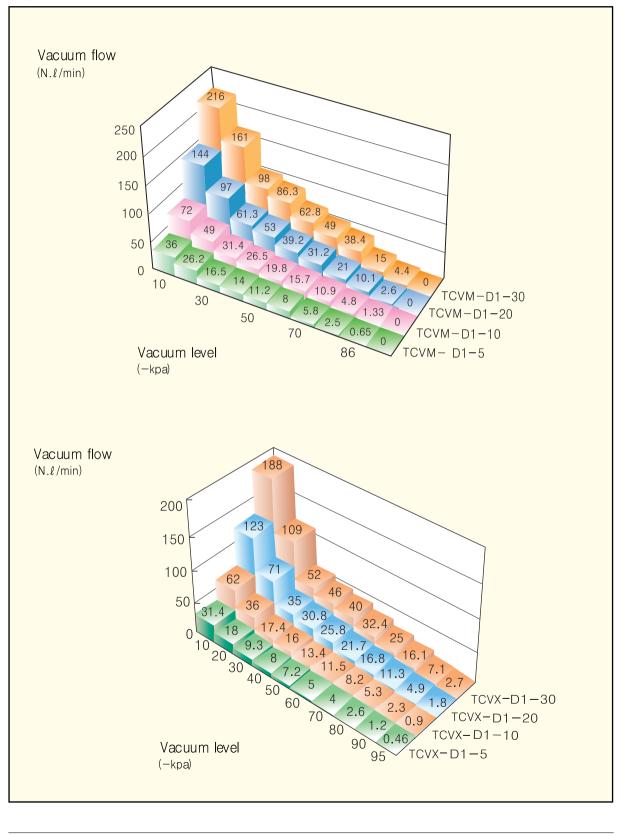
TCVM TCVX	-D1	-5, 10, 20, 30	N	Options
M: Medum Vacuum		Pump' s Size	Seal Material	Vacuum S/W
(-86 kPa)		5	(Check V/V –	-None: Standard
X: Extra Vacuum (-95 kPa)	Chip base	10	basic i nstalled) N: Nitrile	-S/W: With Switch
TOTAL Chip Type	Blocktype	20	V: Viton	-CXC: With External Check V/V
Vacuum Pump Chip Base Type		30	E: EPDM	Chick V/V

TCVM-D1 / TCVX-D1 Series

Characteristics / Medium Vacuum & Extra Vacuum

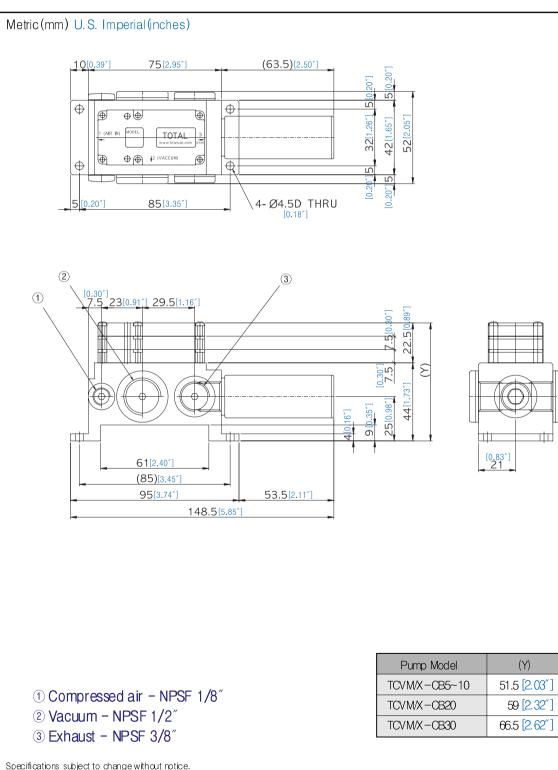
	Max. Vacuum	Max. Vacuum	Air	Noise	Net	Pipe Arrangement (\emptyset)			
Pump Model	(mmHg · G) (-inHg) (-kPa)	Flow (N ℓ /min) (scfm)	Consumption (N ℓ /min) (scfm)	Level (dBA)	Weight (g) (oz)	Compressed Air (mm) (inches)	Vacuum (mm) (inches)	Exhaust (mm) (inches)	
TCVM-D1-5		36 1.271	15~21 0.530~0.742	57~63	178 6.278	>2 0.08″	>5 0.20″	1/8″	
TCVM-D1-10	645	72 2.542	30~42 1.059~1.483	58~65	178 6.278	>2 0.08″	>8 0.32″	1/8″	
TCVM-D1-20	25.39 86	144 5.085	60 ~8 4 2.119~2.966	58~65	278 9.805	>4 0.16″	>10 0.39″	3/8″	
TCVM-D1-30		216 7.627	90~125 3.178~4.414	58~65	289 10.198	≻4 0.16″	>12 0.47″	3/8″	
TCVX-D1-5		31.4 1.109	21.6 0.763	57~63	178 6.278	>2 0.08″	>5 0.20″	1/8″	
TCVX-D1-10	712.5	62 2.189	43.2 1.525	60~68	178 6.278	>2 0.08″	>8 0.32″	1/8″	
TCVX-D1-20	28.05 95	123 4.343	86.5 3.054	60~68	278 9.805	>4 0.16″	>10 0.39″	3/8″	
TCVX-D1-30		188 6.638	129 4.555	60~68	289 10.198	>4 0.16″	>12 0.47″	3/8″	

Vacuum flow in (N l /min) (scfm) at different vacuum levels (mmHg · G) (-inHg) (-kPa)


Vacuum _ Level		Vacuum Flow (N / /min) (scfm)								
Pump Model	000	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90
TCVM-D1-5	36 1.271	26.2 0.925	16.5 0.583	14 0.494	11.2 0.395	8 0.282	5.8 0.205	2.5 0.088	0.65 0.023	_
TCVM-D1-10	72 2.542	49 1.730	31.4 1.109	26.5 0.936	19.8 0.699	15.7 0.554	10.9 0.385	4.8 0.169	1.33 0.047	-
TCVM-D1-20	144 5.085	97 3.425	61.3 2.165	53 1.871	39.2 1.384	31.2 1.102	21 0.742	10.1 0.357	2.6 0.092	-
TCVM-D1-30	216 7.627	161 5.685	98 3.460	86.3 3.047	62.8 2.218	49 1.730	38.4 1.356	15 0.530	4.4 0.155	-
TCVX-D1-5	31.4 1.109	18 0.636	9.3 0.328	8 0.282	7.2 0.254	5 0.177	4 0.141	2.6 0.092	1.2 0.042	0.46 0.016
TCVX-D1-10	62 2.189	36 1.271	17.4 0.614	16 0.565	13.4 0.473	11.5 0.406	8.2 0.290	5.3 0.187	2.3 0.081	0.9 0.032
TCVX-D1-20	123 4.343	71 2.507	35 1.236	30.8 1.088	25.8 0.911	21.7 0.766	16.8 0.593	11.3 0.399	4.9 0.173	1.8 0.064
TCVX-D1-30	188 6.638	109 3.849	52 1.836	46 1.624	40 1.412	32.4 1.144	25 0.883	16.1 0.569	7.1 0.251	2.7 0.095

Vacuum Level				Evacuati	on Time	(sec/ℓ)	(sec/cf)			
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90
TCVM-D1-5	0	0.200 5.660	0.560 15.932	1.050 29.400	1.610 45.402	2.400 67.680	3.480 96.744	5.440 150.144	11.200 315.840	-
TCVM-D1-10	0	0.100 2.830	0.280 7.966	0.540 15.120	0.800 22.560	1.190 33.558	1.800 50.040	2.750 75.900	5.950 167.790	-
TCVM-D1-20	0	0.050 1.415	0.140 3.983	0.260 7.280	0.420 11.844	0.620 17.484	0.920 25.576	1.420 39.192	2.830 79.806	_
TCVM-D1-30	0	0.040 1.132	0.110 3.130	0.170 4.760	0.310 8.742	0.430 12.126	0.650 18.070	1.030 28.428	2.040 57.528	-
TCVX-D1-5	0	0.270 7.641	0.810 23.045	1.540 43.120	2.400 67.680	3.660 103.212	4.950 137.610	7.030 194.028	10.400 293.280	19.400 549.990
TCVX-D1-10	0	0.130 3.679	0.420 11.949	0.790 22.120	1.190 33.558	1.870 52.734	2.500 69.500	3.480 96.048	5.800 163.560	9.900 280.665
TCVX-D1-20	0	0.070 1.981	0.220 6.259	0.390 10.920	0.640 18.048	0.920 25.944	1.290 35.862	1.750 48.300	2.580 72.756	4.900 138.915
TCVX-D1-30	0	0.050 1.415	0.080 2.276	0.110 3.080	0.250 7.050	0.370 10.434	0.590 16.402	0.980 27.048	1.640 46.248	3.380 95.823

Time to evacuate a volume (sec/ ℓ) (sec/cf) at different vacuum levels (mmHg · G) (-i nHg) (-kPa)


Experimental Performance Curve


TOTAL VACUUM TECHNOLOGY

Vacuum Pumps

TCVM/X-D1 Dimension

3) TCVM/X-2: Mini Duplex Type

Performance and Specifications Outline

Max. Vacuum Level	Max. 645.16 ~ 712.68 (mmHg.G) Max86 ~ -95 (kPa) Max25.40 ~ -28.06 (nHg)
Max. Vacuum Flow	Max. 403 (N ℓ /min) Max. 14.230 (scfm)
Supply Air Condition	Compressed Air
Compressed Air Pressure	4~6.2 bar 58.01~89.92 psi
Working Temperature	-20°C~+80°C -4°F~+176°F
Noise Level	57~65 dBA

Ordering Information

TCVM TCVX	-D2	-20, 30, 40, 60	N	Options
		Pump's Size	Seal Material	Vacuum S/W
M: Medum Vacuum (-86 kPa)		20	(Check V/V — basic installed)	-None: Standard
X: Extra Vacuum	Duplex Type	30	N: Nitrile	– S/W : With Switch
(-95 kPa)		40	V: Viton	-CXC: With External Check V/V
TOTAL Chip Type Vacuum Pump		60	E: EPDM	

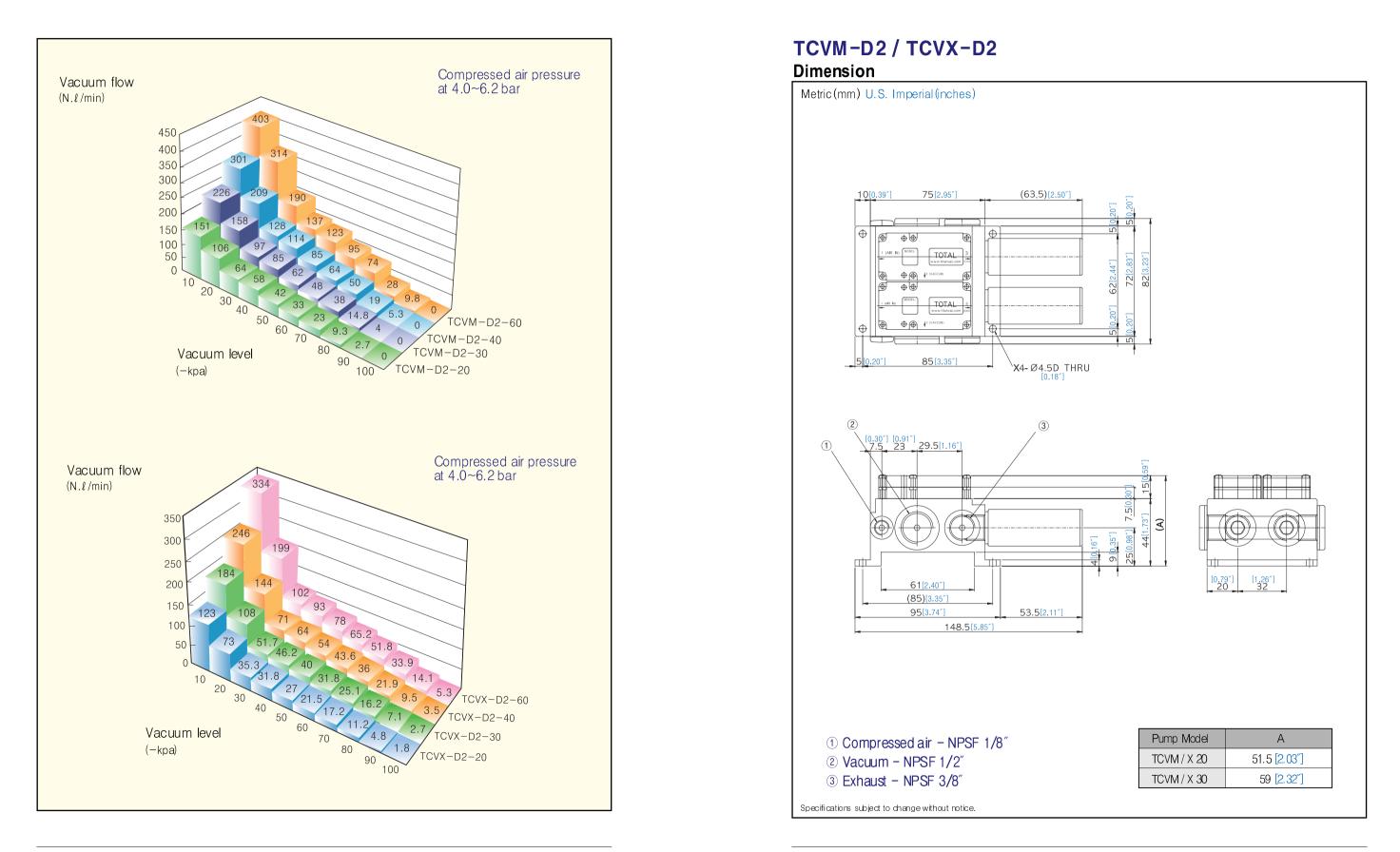
Mini chip type of pumps with multistage nozzle in the aluminum connection plate that has vacuum port and exhaust port together to make it easy to be laid out and maximize the vacuum flow.

TCVM-D2 / TCVX-D2 Series Standard Type

Characteristics / Medium Vacuum & Extra Vacuum

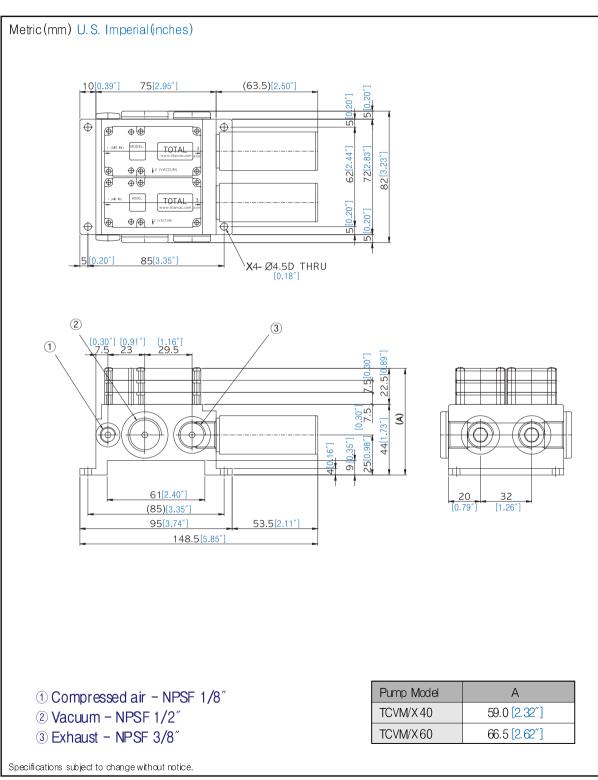
	Max.	Vacuum Vacuum Noise		Net	Pipe Arrangement (Ø)			
Pump Model	(mmHg · G) (-inHg) (-kPa)	Flow (N ℓ /min) (scfm)	Consumption (N ℓ /min) (scfm)	Level (dBA)	Weight (g) (oz)	Compressed Air (mm) (inches)	Vacuum (mm) (inches)	Exhaust (mm) (inches)
TCVM-D2-20		151 5.332	60~84 2.119~2.966	57~60	279 9.840	>4 0.16″	>10 0.39″	3/8″
TCVM-D2-30	645	226 7.980	90~128 3.178~4.520	58~60	301 10.616	≻6 0.24″	>10 0.39″	3/8″
TCVM-D2-40	25.39 86	301 10.629	122~170 4.308~6.003	58~63	323 11.392	≻6 0.24″	>12 0.47″	3/8″
TCVM-D2-60		403 14.230	184~258 6.497~9.110	60~65	345 12.168	≻6 0.24″	>12 0.47″	3/8″
TCVX-D2-20		123 4.343	91~96 3.213~3.390	57~60	279 9.840	>4 0.16″	>10 0.39″	3/8″
TCVX-D2-30	712.5	184 4.343	132~144 4.661~5.085	58~60	301 10.616	≻6 0.24″	>10 0.39″	3/8″
TCVX-D2-40	28.05 95	246 8.686	177~192 6.250~6.780	58~63	323 11.392	≻6 0.24″	>12 0.47″	3/8″
TCVX-D2-60		334 11.794	268~288 9.463~10.169	60~65	345 12.168	≻6 0.24″	>12 0.47″	3/8″

Vacuum flow in (N / /min) (scfm) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

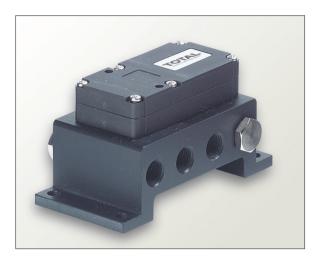

Vacuum _ Level	Vacuum Flow (N & /min) (scfm)									
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90
TCVM-D2-20	151 5.332	106 3.743	64 2.260	58 2.048	42 1.483	33 1.165	23 0.812	9.3 0.328	2.7 0.095	-
TCVM-D2-30	226 7.980	158 5.579	97 3.425	85 3.001	62 2.189	48 1.695	38 1.342	14.8 0.523	4 0.141	-
TCVM-D2-40	301 10.629	209 7.380	128 4.520	114 4.025	85 3.001	64 2.260	50 1.766	19.0 0.671	5.3 0.187	-
TCVM-D2-60	403 14.230	314 11.088	190 6.709	137 4.838	123 4.343	95 3.355	74 2.613	28 0.989	9.8 0.346	-
TCVX-D2-20	123 4.343	73 2.578	35.3 1.246	31.8 1.123	27 0.953	21.5 0.759	17.2 0.607	11.2 0.395	4.8 0.169	1.8 0.064
TCVX-D2-30	184 6.497	108 3.814	51.7 1.826	46.2 1.631	40 1.412	31.8 1.123	25.1 0.886	16.2 0.572	7.1 0.251	2.7 0.095
TCVX-D2-40	246 8.686	144 5.085	71 2.507	64 2.260	54 1.907	43.6 1.540	36 1.271	21.9 0.773	9.5 0.335	3.5 0.124
TCVX-D2-60	334 11.794	199 7.027	102 3.602	93 3.284	78 2.754	65.2 2.302	51.8 1.829	33.9 1.197	14.1 0.498	5.3 0.187

Time to evacuate a volume (sec/ ℓ) (sec/cf) at different vacuum Levels (mmHg · G) (-inHg) (-kPa)

Vacuum Level		Evacuation Time (sec/ l) (sec/cf)									
Pump Model	0 0 0	75 2.95 <mark>10</mark>	150 5.91 <mark>20</mark>	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90	
TCVM-D2-20	0	0.061 1.726	0.160 4.552	0.280 7.840	0.400 11.280	0.600 16.920	0.880 24.464	1.340 36.984	2.590 73.038	-	
TCVM-D2-30	0	0.044 1.245	0.110 3.130	0.190 5.320	0.300 8.460	0.480 13.536	0.650 18.070	1.000 27.600	1.960 55.272	-	
TCVM-D2-40	0	0.028 0.792	0.028 0.800	0.126 3.528	0.200 5.640	0.300 8.460	0.450 12.510	0.700 19.320	1.300 36.660	-	
TCVM-D2-60	0	0.020 0.566	0.020 0.569	0.086 2.408	0.130 3.666	0.200 5.640	0.290 8.062	0.450 12.420	0.880 24.816	-	
TCVX-D2-20	0	0.066 1.868	0.066 1.878	0.390 10.920	0.620 17.484	0.940 26.508	1.300 36.140	1.780 49.128	2.600 73.320	4.960 140.616	
TCVX-D2-30	0	0.050 1.415	0.050 1.423	0.290 8.120	0.460 12.972	0.700 19.740	0.950 26.220	1.300 35.880	1.940 54.708	3.630 102.911	
TCVX-D2-40	0	0.034 0.962	0.034 0.967	0.200 5.600	0.300 8.460	0.450 12.690	0.620 17.112	0.880 24.288	1.300 36.660	2.500 70.875	
TCVX-D2-60	0	0.022 0.623	0.022 0.626	0.130 3.640	0.240 6.768	0.350 9.870	0.420 11.592	0.590 16.284	0.880 24.816	1.700 48.195	



Chap. 3 Vacuum Pumps



TCVM-D2/TCVX-D2 Dimension

4) TCVM/X-CB: Mini Base Block Type

Performance and Specifications Outline

Max. Vacuum Level	Max. 645.16 ~ 712.68 (mmHg.G) Max86 ~ -95 (kPa) Max25.40 ~ -28.06 (nHg)				
Max. Vacuum Flow	Max. 216 (N l /min) Max. 7.627 (scfm)				
Supply Air Condition	Compressed Air				
Compressed Air Pressure	4~6.2 bar 58.01~89.92 psi				
Working Temperature	-20°C~+80°C -4°F~+176°F				
Noise Level	57~65 dBA				

Ordering Information

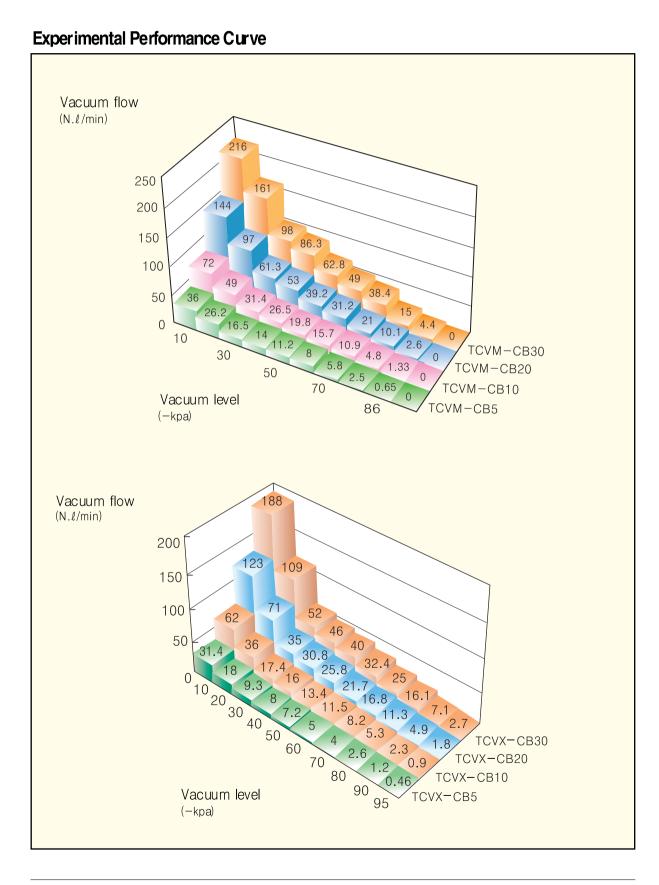
TCVM TCVX	-СВ	5, 10, 20, 30	N	Option
M: Medum Vacuum		Pump's Size	Seal Material	Vacuum S/W
(-86 kPa)		5	(Check V/V – basic i nstalled)	-None: Standard
X: Extra Vacuum	Chip Base	10	N: Nitrile	– S/W : With Switch
<mark>(−95 kPa)</mark> TOTAL Chip Type	BlockType	20	V: Viton	-CXC: With External Check V/V
Vacuum Pump Chip Base Block Type		30	E: EPDM	UTION V/V

Mini chip type of pumps in the aluminum connection plate for multiple connections to maximize workability and reliability.

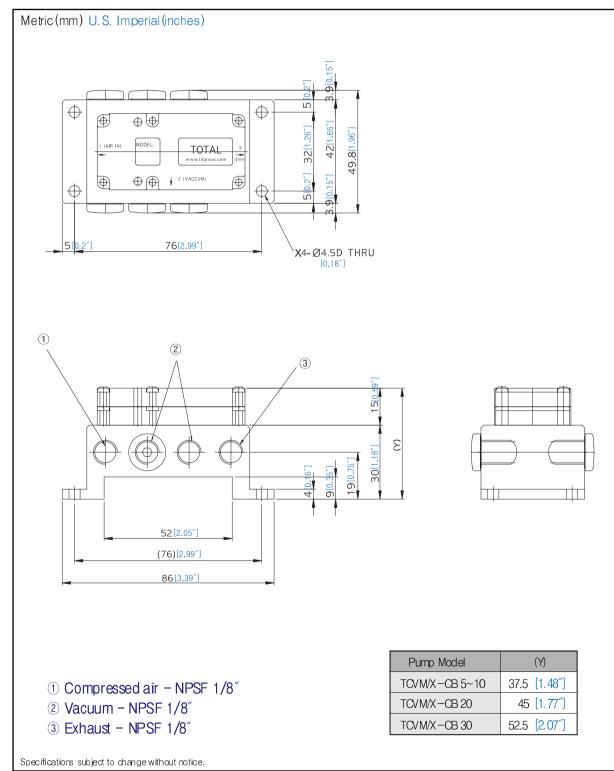
TCVM/X-CB Series Chip Base Block Type

Characteristics / Medium Vacuum & Extra Vacuum

	Max.	Max.	Air	Naiaa	Net	Pipe Arrangement		ıt (Ø)
Pump Model	Vacuum (mmHg · G) (-inHg) (-k Pa)	Vacuum Flow (Nℓ/min) (scfm)	Consumption (N ℓ /min) (scfm)	Level (dB A)	(dBA) (oz)		Vacuum (mm) (inches)	Exhaust (mm) (inches)
TCVM-CB5		36 1.271	15~21 0.530~0.742	57~63	178 6.278	>2 0.08″	≻5 0.20″	1/8″
TCVM-CB10	645	72 2.542	30~42 1.059~1.483	58~65	178 6.278	>2 0.08″	×8 0.32″	1/8″
TCVM-CB20	25.39 86	144 5.085	60~84 2.119~2.966	58~65	278 9.805	>4 0.16″	>10 0.39″	3/8″
TCVM-CB30		216 7.627	90~125 3.178~4.414	58~65	289 10.198	>4 0.16″	>12 0.47″	3/8″
TCVX-CB5		31.4 1.109	21.6 0.763	57~63	178 6.278	>2 0.08″	>5 0.20″	1/8″
TCVX-CB10	712.5	62 2.189	43.2 1.525	60~68	178 6.278	>2 0.08″	>8 0.32″	1/8″
TCVX-CB20	28.05 95	123 4.343	86.5 3.054	60~68	278 9.805	>4 0.16″	>10 0.39″	3/8″
TCVX-CB30		188 6.638	129 4.555	60~68	289 10.198	>4 0.16″	>12 0.47″	3/8″


Vacuum flow in (N / /min) (scfm) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

Vacuum Level		Vacuum Flow (N / /min) (scfm)								
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90
TCVM-CB5	36 1.271	26.2 0.925	16.5 0.583	14 0.494	11.2 0.395	8 0.282	5.8 0.205	2.5 0.088	0.65 0.023	-
TCVM-CB10	72 2.542	49 1.730	31.4 1.109	26.5 0.936	19.8 0.699	15.7 0.554	10.9 0.385	4.8 0.169	1.33 0.047	-
TCVM-CB20	144 5.085	97 3.425	61.3 2.165	53 1.871	39.2 1.384	31.2 1.102	21 0.742	10.1 0.357	2.6 0.092	-
TCVM-CB30	216 7.627	161 5.685	98 3.460	86.3 3.047	62.8 2.218	49 1.730	38.4 1.356	15 0.530	4.4 0.155	-
TCVX-0B5	31.4 1.109	18 0.636	9.3 0.328	8 0.282	7.2 0.254	5 0.177	4 0.141	2.6 0.092	1.2 0.042	0.46 0.016
TCVX-CB10	62 2.189	36 1.271	17.4 0.614	16 0.565	13.4 0.473	11.5 0.406	8.2 0.290	5.3 0.187	2.3 0.081	0.9 0.032
TCVX-CB20	123 4.343	71 2.507	35 1.236	30.8 1.088	25.8 0.911	21.7 0.766	16.8 0.593	11.3 0.399	4.9 0.173	1.8 0.064
TCVX-CB30	188 6.638	109 3.849	52 1.836	46 1.624	40 1.412	32.4 1.144	25 0.883	16.1 0.569	7.1 0.251	2.7 0.095


Time to evacuate a volume (sec/ ℓ) (sec/cf) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

Vacuum Level	Evacuation Time (sec/ l) (sec/cf)									
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90
TCVM-CB5	0	0.020 5.660	0.560 15.932	1.050 29.400	1.610 45.402	2.400 67.680	3,480 96.744	5.440 150.144	11.200 315.840	-
TCVM-CB10	0	0.010 2.830	0.280 7.966	0.540 15.120	0.800 22.560	1.190 33.558	1.800 50.040	2.750 75.900	5.950 167.790	-
TCVM-CB20	0	0.050 1.415	0.140 3.983	0.260 7.280	0.420 11.844	0.620 17.484	0.920 25.576	1.420 39.192	2.830 79.806	-
TCVM-CB30	0	0.040 1.132	0.110 3.130	0.170 4.760	0.310 8.742	0.430 12.126	0.650 18.076	1.030 28.428	2.040 57.578	_
TCVX-CB5	0	0.270 7.641	0.810 23.045	1.540 43.120	2.400 67.680	3.660 103.212	4.950 137.610	7.030 194.028	10.400 293.280	19.400 549.99
TCVX-CB10	0	0.130 3.679	0.420 11.949	0.790 22.120	1.190 33.558	1.870 52.734	2.500 69.500	3.480 96.048	5.800 163.560	9.900 280.665
TCVX-CB20	0	0.070 1.981	0.220 6.259	0.390 10.920	0.640 18.048	0.920 25.944	1.290 35.862	1.750 48.300	2.580 72.756	4.900 138.915
TCVX-CB30	0	0.050 1.415	0.080 2.276	0.110 3.080	0.250 7.050	0.370 10.434	0.590 16.402	0.980 27.048	1.640 46.248	3.380 95.823

TCVM-CB / TCVX-CB Dimension

Pump Model	(Y)
TCVM/X-0B 5~10	37.5 [1.48″]
TCVM/X-CB 20	45 [1.77″]
TCVM/X-CB 30	52.5 [2.07″]

5) TCVM/X SM: Mini Multiple Stack Type

Integrated of mini chip type of pumps with multi-stage nozzle as a manifold. Possible to be put together from 2(two) to max. 12(twelve), and can be operated by 1(one) air supply line.

When a line has vacuum breaking, there is no effect on the other line of pumps. Therefore, this can improve reliability on the process having much vacuum leakage or on the process using many suction cups.

Performance and Specifications Outline

Max. Vacuum Level	Max. 712.68 (mmHg.G.) Max. –95 (kPa) Max. –28.06 (inHg)				
Max. Vacuum Flow	Different by the number of stacks. Max. 31.2 \sim 980 (N $\ell/min)$				
	Max. 1.102 ~ 7.627 (sc.fm)				
Supply Air Condition	Compressed Air				
Compressed Air Pressure	4~6.2 bar 58.01~89.92 psi				
Working Temperature	-20°C~+80°C -4°F~+176°F				
Noise Level	51~68 dBA				

Ordering Information

TCVM TCVX	5, 10	X()	SM	Ν	Option
M: Medium Vacuum (-86 kPa) X: Extra Vacuum (-95 kPa) TOTAL Chip Type Vacuum pump	Basic Stack Pump's Size 5: 31.2 (N <i>l</i> /min) 1.102 (scfm) 10: 61.8 (N <i>l</i> /min) 2.182 (scfm)	The Number of Pumps Can be stacked from 2 (two) to 12 (twelve),	Stack Manifold Type	Seal Material (Check V/V – basic in stalled) N: Nitrile V: Viton E: EPDM	Vacuum S/W -None: Standard -S/W: With switch -CXC: External Check V/V

TCVM5, 10x() SM Type: Mini Stack Manifold

Characteristics / Medium Vacuum

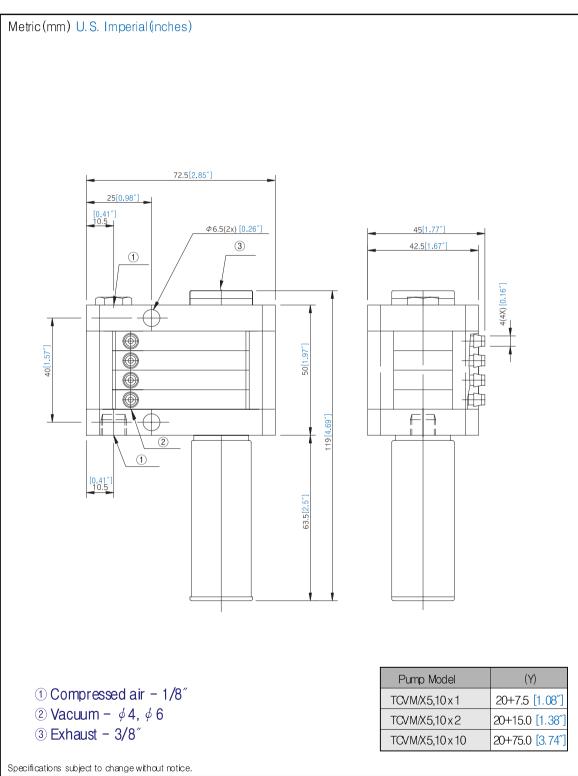
	Max.	Max.	Air		Net	Pipe A	rrangemen	t (Ø)
Pump Model	Vacuum (mmHg · G) (-inHg) (-k Pa)	Vacuum Flow (N ℓ/min) (scfm)	Consumption (N ℓ/min) (scfm)	Noise Level (dB A)	Weight (g) (oz)	Compressed Air (mm) (inches)	Vacuum (mm) (inches)	Exhaust (mm) (inches)
TCVM5x2SM		36 x 2 1.278 x 2	31~42 1.095~1.483		137 4.832	>2 0.08″	>4 0.16″	3/8″ × 1
TCVM5x3 SM		x 3	46~64 1.624~2.260		155 5.467	>2 0.08″	>4 0.16″	3/8″ × 1
TCVM5x4SM		× 4	40~84 1.412~2.966		173 6.102	≻4 0.16″	≻4 0.16″	3/8″ x 1
TCVM5x5 SM		x 5	74~104 2.613~3.672		1 91 6.737	>4 0.16″	≻4 0.16″	3/8″ × 1
TCVM5x6 SM	645	x 6	90~126 3.178~4.449	54.00	209 7.371	≻6 0.24″	≻4 0.16″	3/8″ × 1
TCVM5x7 SM	25.39	x 7	105~148 3.708~5.226	54~68 dBA	227 8.006	≻6 0.24″	≻4 0.16″	3/8″ × 1
TCVM5x8 SM	86	x 8	120~168 4.237~5.932		245 8.641	>6 0.24″	>4 0.16″	3/8″ × 2
TCVM5x9 SM		x 9	138~190 4.873~6.709		263 9.276	≻6 0.24″	>4 0.16″	3/8″ × 2
TCVM5x10 SM		x 10	152~211 5.367~7.451		281 9.910	≻6 0.24″	>4 0.16″	3/8″ × 2
TCVM5x11 SM		x11	166~234 5.862~8.263		299 10.546	≻6 0.24″	≻4 0.16″	3/8″ x 2
TCVM5x12 SM		x12	184~259 6.497~9.145		317 11.181	>6 0.24″	>4 0.16″	3/8″ × 2
TCVM10x2 SM		72 x 2 2.542 x 2	60~85 2.119~3.001		1 37 4.832	>6 0.24″	>4 0.16″	3/8″ × 1
TCVM10x3 SM		x 3	91~128 3.213~4.520		155 5.467	>6 0.24″	>4 0.16″	3/8″ × 1
TCVM10x4 SM		x 4	122~172 4.308~6.073		173 6.102	>6 0.24″	>4 0.16″	3/8″ x 1
TCVM10x5 SM		x 5	153~215 5.403~7.592		1 91 6.737	≻6 0.24″	≻4 0.16″	3/8″ x 1
TCVM10x6 SM	645	x 6	182~261 6.427~9.216	F7 60	209 7.371	>6 0.24″	>4 0.16″	3/8″ x 1
TCVM10x7 SM	25.39 86	x 7	214~303 7.556~10.699	57~68 dBA	227 8.006	>8 0.32″	≻4 0.16″	3/8″ x 1
TCVM10x8 SM		x 8	246~341 8.686~12.041		245 8.641	>8 0.32″	>4 0.16″	3/8″ x 2
TCVM10x9 SM		x 9	275~384 9.710~13.559		263 9.276	>8 0.32″	>4 0.16″	3/8″ × 2
TCVM10x10SM		x 10	304~430 10.734~15.184		281 9.910	>8 0.32″	>4 0.16″	3/8″ × 2
TCVM10x11 SM		x11	338~472 11.935~16.667		299 10.546	>8 0.32″	>4 0.16″	3/8″ x 2
TCVM10x12SM		x12	372~512 13.136~18.079		317 11.181	>8 0.32″	≻4 0.16″	3/8″ x 2

TOTAL VACUUM VAC. TECHNOLOGY

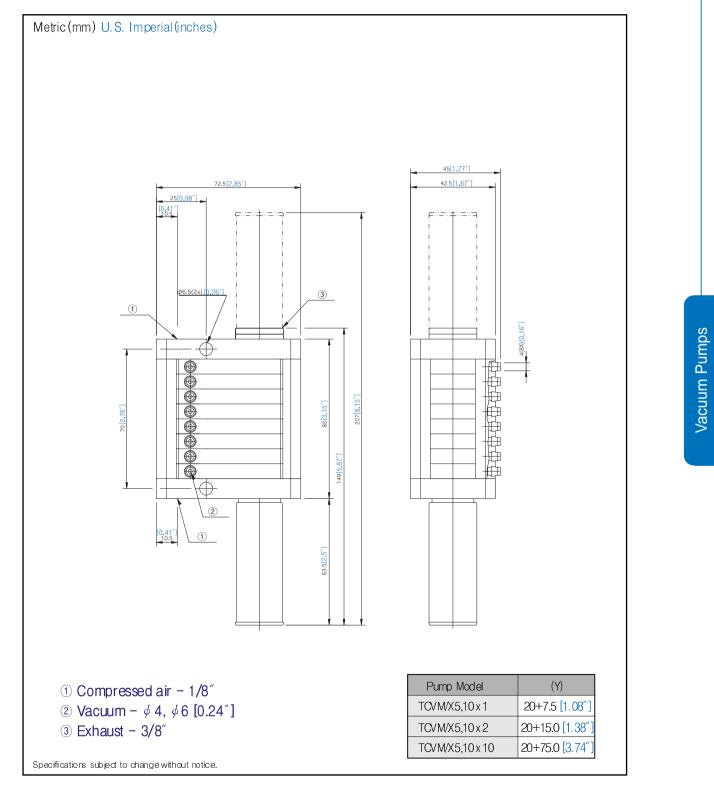
TCVX5, 10x() SM Type: Mini Stack Manifold

Characteristics / Extra Vacuum

	Max.	Max.	Air		Net	Pipe A	rrangemen	t (Ø)
Pump Model	Vacuum (mmHg · G) (-inHg) (-kPa)	Vacuum Flow (N ℓ /min) (scfm)	Consumption (N ℓ /min) (scfm)	Noise Level (dBA)	Weight (g) (oz)	Compressed Air (mm) (inches)	Vacuum (mm) (inches)	Exhaust (mm) (inches)
TCVX5x2 SM		31.2 x 2 1.102 x 2	40~55 1.412~1.942		137 4.832	>2 0.08″	>4 0.16″	3/8″ x 1
TCVX 5x3 SM		x 3	59~84 2.083~2.966		155 5.467	>2 0.08″	>4 0.16″	3/8″ x 1
TCVX 5x4 SM		x 4	77~109 2.719~3.849		173 6.102	>4 0.16″	>4 0.16″	3/8″ x 1
TCVX 5x5 SM		x 5	96~135 3.390~4.767		191 6.737	>4 0.16″	≻4 0.16″	3/8″ x 1
TCVX 5x6 SM	712.5	× 6	117~164 4.131~5.791	 00	209 7.371	>6 0.24″	≻4 0.16″	3/8″ x 1
TCVX5x7 SM	28.05	x7	136~192 4.802~6.780	57~68 dBA	227 8.006	>6 0.24″	>4 0.16″	3/8″ x 1
TCVX 5x8 SM	95	× 8	156~218 5.508~7.698		245 8.641	>6 0.24″	>4 0.16″	3/8″ x 2
TCVX 5x9 SM		×9	180~247 6.356~8.722		263 9.276	>6 0.24″	≻4 0.16″	3/8″ × 2
TCVX5x10SM		x10	198~275 6.992~9.710		281 9.910	>6 0.24″	≻4 0.16″	3/8″ × 2
TCVX5x11SM		x11	216~305 7.627~10.770		299 10.546	>6 0.24″	>4 0.16″	3/8″ x 2
TCVX5x12SM		x12	239~337 8.439~11.900		317 11.181	>6 0.24″	>4 0.16″	3/8″ x 2
TCVX 10x2 SM		61.8 x 2 2.182x 2	79~112 2.790~3.955		137 4.832	>2 0.24″	>4 0.16″	3/8″ x 1
TCVX 10x3 SM		×3	117~166 4.131~5.862		155 5.467	>2 0.24″	>4 0.16″	3/8″ x 1
TCVX 10x4 SM		× 4	158~222 5.579~7.839		173 6.102	>4 0.24″	>4 0.16″	3/8″ x 1
TCVX 10x5 SM		x 5	199~280 7.027~9.887		191 6.737	>4 0.24″	≻4 0.16″	3/8″ x 1
TCVX 10x6 SM	645	x 6	236~340 8.333~12.006	E7 60	209 7.371	>6 0.24″	>4 0.16″	3/8″ x 1
TCVX 10x7 SM	25.39 86	x 7	277~394 9.781~13.912	57~68 dBA	227 8.006	>6 0.32″	>4 0.16″	3/8″ x 1
TCVX 10x8 SM		× 8	320~445 11.299~15.713		245 8.641	>6 0.32″	>4 0.16″	3/8″ x 2
TCVX 10x9 SM		×9	356~499 12.571~17.620		263 9.276	>6 0.32″	≻4 0.16″	3/8″ x 2
TCVX 10x10 SM		x10	396~560 13.983~19.774		281 9.910	>6 0.32″	≻4 0.16″	3/8″ x 2
TCVX 10x11 SM		x11	440~613 15.537~21.645		299 10.546	>6 0.32″	≻4 0.16″	3/8″ x 2
TCVX 10x12 SM		x12	483~665 17.055~23.482		317 11.181	≻6 0.32″	≻4 0.16″	3/8″ x 2


Vacuum flow in (N / /min) (scfm) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

Vacuum Level		Vacuum Flow (N ℓ /min) (scfm)									
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 <mark>30</mark>	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 <mark>70</mark>	600 23.62 80	675 26.57 <mark>90</mark>	
TCVM5x1 SM	36.2 1.278	22 0.777	12 0.424	9.7 0.343	8 0.282	5.6 0.198	4.7 0.166	2.1 0.074	0.78 0.028	_	
TCVM10x1 SM	72.0 2.542	45.4 1.603	23 0.812	19.8 0.699	16.3 0.576	12.6 0.445	9.3 0.328	4.3 0.152	1.48 0.052	-	
TCVX5x1 SM	31.2 1.102	19 0.671	9.8 0.346	8.3 0.293	7.1 0.251	4.9 0.173	4 0.141	2.8 0.099	1.3 0.046	0.47 0.017	
TCVX 10x1 SM	61.8 2.182	38 1.342	19.6 0.692	17 0.600	14 0.494	11 0.388	8 0.282	5.6 0.198	2.6 0.092	0.94 0.033	


Time to evacuate a volume (sec/ l) (sec/cf) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

Vacuum Level		Evacuation Time (sec/ l) (sec/cf)									
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90	
TCVM5x1 SM	0	0.200 5.660	0.660 18.777	1.300 36.400	1.690 47.658	2.720 76.704	4.400 122.320	6.500 179.400	12.900 363.780	-	
TCVM10x1 SM	0	0.120 3.396	0.280 7.966	0.580 16.240	0.810 22.842	1.220 34.404	1.840 51.152	2.880 79.488	5.320 150.024	-	
TCVX5x1 SM	0	0.270 7.641	0.820 23.329	1.540 43.120	2.600 73.320	3.650 102.930	4.930 137.054	7.000 193.200	10.800 304.560	-	
TCVX 10x1 SM	0	0.130 3.679	0.410 11.665	0.770 21.560	1.240 34.968	1.840 51.888	2.510 69.778	3.520 97.152	5.900 166.380	-	

TCVM(X)5, 10 x 4 SM Dimension

TCVM(X)5, 10 x 8 SM Dimension

6) TVL: Normal Low Vacuum Standard Type

Air - driven vacuum pump with multi-stage ventury nozzle of low vacuum & high flow. By using only 4 5.8 bar, can get up to -74.2 kpa of vacuum level and much vacuum flow than other identical products.

Use of Application - process required low vacuum & high flow such as film process device, shoemaking, gas recovery, printing machine, etc.

Performance and Specifications Outline

Max Vacuum Level	Max. 556 .64 (mmHg.G) Max74.2 (kPa) Max21.91 (in Hg)
Max. Vacuum Flow	Max. 388 3,046 (/min) Max. 13.701 107.556 (scfm)
Supply Air Condition	Camp ressed Air
Compressed Air Pres sure	4 5.8 bar 58.01 84.12 psi
Working Temperature	-20 +80 -4 +176
Noise Level	60 65 dBA

Ordering information

TV L -25.50.75 of dof Vacum Pump -RC5 AP N -E.S. Ilenufacturer Pump Vacum Level Max. 7074 Vacum Pump Vacum Pump Max. 727.083 (c/min) Max. 767 (/min) Max. 767 (/min) Max. 767 (/min) Max. 767 (/min) Max. 767 (/min) Max. 765 (/min) Max. 765 (/min) Max. 765 (/min) Max. 1,006 (/min) Max. 1,492 (/min) Max. 1,492 (/min) Max. 1,684 (/min) Max. 1,50 : Max. 1,684 (/min) Max. 1,684 (/min) Max. 1,684 (/min) Max. 1,684 (/min) Max. 1,684 (/min) Max. 1,684 (/min) Max. 1,681 (/min) Max. 1,891 (/min) Max. 1,991 (or doring mi						
Manufacturer Vacuum Level Size of Vacuum Pump Input Compressed Ar d Material of Pump Body Material of Sei Kis Energy Saving Ki & The Oher Option TOTAL Vacuum Pump L: Low Vacuum Max72.4KPa) 25: Max. 13701 (sc/m) Max. Circulating Pressure -C5: 4 5 bar P: PPS V: Vion -E. S: Energy Saving Ki Max 72.4KPa) Max. 13701 (sc/m) Max. -C5: 4 5 bar P: PPS + PPS -E. S: Energy V: Vion -E. S: Energy Saving Ki Nax. 767 (/min) Max. 50: Max. 765: Max. -C5: 4 5 bar P: PPS + PPS -E. S: Energy V: Vion -E. S: Energy Saving Ki 76: Max. 1,108 (/min) Max. 75: Max. 1,492 (/min) Max. -C5: 4 5 bar P: PPS+PPS -E. S: Energy Saving Ki 100: Max. 100: Max. 100: Max. -C5: 4 5 bar -F. S: Energy Saving Ki 100: Max. 100: Max. 100: Max. -F. S: Energy Saving Ki -F. S: Energy Saving Ki 125: Max. 100: Max. -F. S: Energy Saving Ki -F. S: Energy Saving Ki 125: Max. 125: Max. -F. S: Energy Saving Ki -F. S: Energy Saving Ki 150: Max. 150: Max. -F. S: Energy Saving Ki -F. S: Energy Saving Ki	TV	L	25 50 75	- C5	AP	Ν	- E . S
	TOTAL Vacuum	L: Low Vacuum	Size of Vacuum Pump 25: Max. 388 (/min) Max. 13.701 (scfm) 50: Max. 767 (/min) Max. 27.083 (scfm) 75: Max. 1,108 (/min) Max. 39.124 (scfm) 100: Max. 1,492 (/min) Max. 52.684 (scfm) 125: Max. 1,864 (/min) Max. 52.684 (scfm) 125: Max. 1,864 (/min) Max. 52.684 (scfm) 125: Max. 1,864 (/min) Max. 52.684 (scfm)	Compressed Ai cf Pressure Circulating Pressure	Pump Body A: Aluminum P: PPS AP: AI+PPS PP: PPS+PPS	Seal Kits N: Nitrile V: Viton	Saving Kit & The Other Option -E.S: Energy Saving Kit (S/W: swich Cut-O ff V/V, Check V/V, Vacuum

Vacuum Fumps

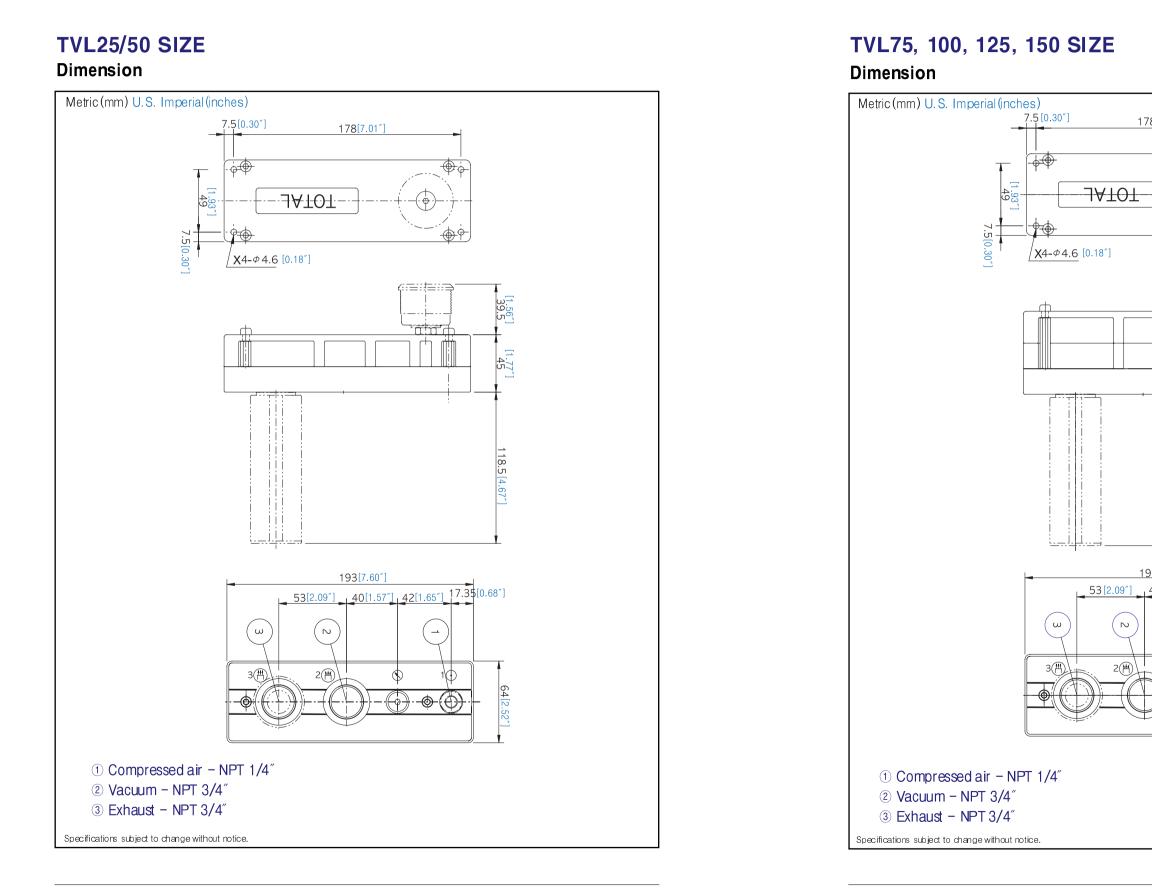
TVL: Medium Flow Low Vacuum Type

Characteristics / Low Vacuum

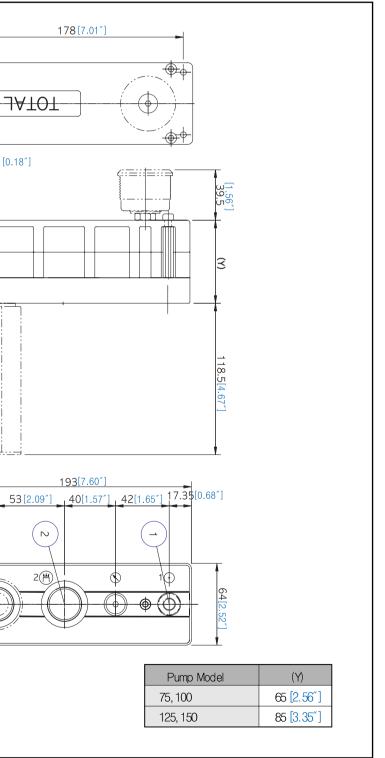
	Max.	Max.	Air	Malaa	Net	Pipe	Arrangement (Ø)		
Pump Model	Vacuum (mmHg · G) (−inHg) (−k Pa)	Vacuum Flow (Nℓ/min) (scfm)	Consumption (N ℓ/min) (scfm)	Noise Level (dB A)	Weight (g) (oz)	Compressed Air (mm) (inches)	Vacuum (mm) (inches)	Exhaust (mm) (inches)	
TVL25		388 13.701	78~106 2.754~3.743	60~65	645 22.749	>4 0.16″	>12 0.47″	G 3/4″	
TVL50		767 27.083	154~212 5.438~7.486	60~65	651 22.961	≻6 0.24″	≻14 0.55″	G 3/4″	
TVL75	557 21.93	1,108 39.1 <i>2</i> 4	232~329 8.192~11.617	60~65	847 29.874	>8 0.32″	≻19 0.75″	G 3/4″	
TVL100	74.27	1,492 52.684	300~415 10.593~14.654	60~65	853 30.085	>8 0.32″	≻19 0.75″	G 3/4″	
TVL125		1,864 65.819	376~544 13.277~19.209	60~65	1,049 36.998	>8 0.32″	>25 0.98″	G 3/4″	
TVL150		2,320 81.921	448~637 15.819~22.493	60~65	1,055 37.210	>10 0.39″	>25 0.98″	G 3/4″	

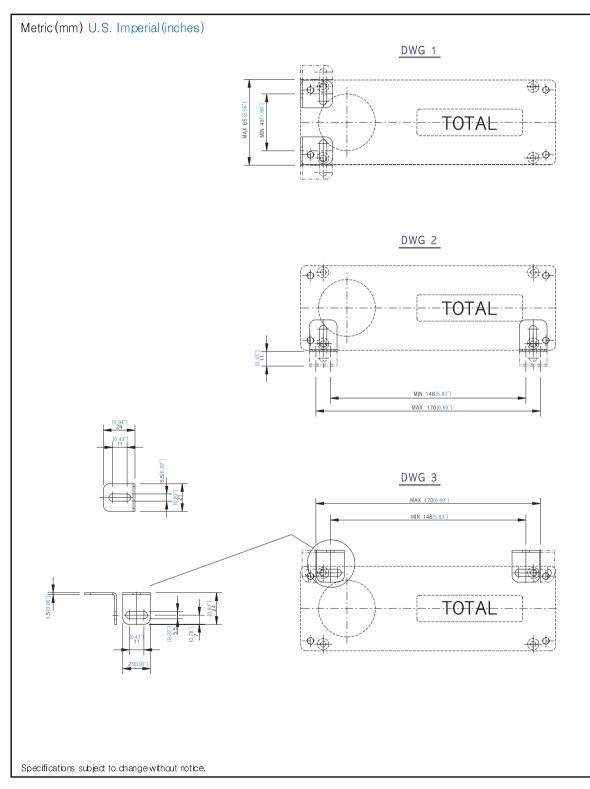
Vacuum flow in (N ℓ /min) (scfm) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

Vacuum Level		Vacuum Flow (N & /min) (scfm)									
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80		
TVL25	388 13.701	228 8.051	166 5.862	108 3.814	55 1.942	43 1.518	27 0.953	16 0.565	-		
TVL50	767 27.083	468 16.525	312 11.017	199 7.027	107 3.778	89 3.143	61 2.154	37 1.306	-		
TVL75	1,108 39.1 <i>2</i> 4	743 26.236	542 19.138	372 13.136	220 7.768	166 5.862	121 4.273	77 2.719	-		
TVL100	1,492 52.684	912 32.203	661 23.340	374 13.206	278 9.816	182 6.427	149 5.261	92 3.249	-		
TVL125	1,864 65.819	1,097 38.736	803 28.355	414 14.619	322 11.370	214 7.556	180 6.356	103 3.637	-		
TVL150	2,320 81.921	1,322 46.681	971 34.287	532 18.785	378 13.347	271 9.569	201 7.097	152 5.367	_		

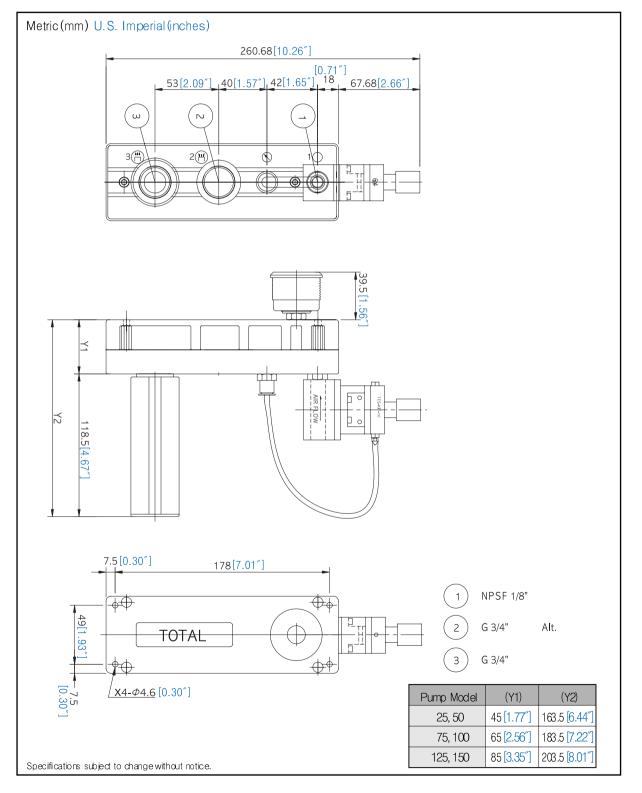

Time to evacuate a volume (sec/ l) (sec/cf) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

Vacuum Level		Evacuation Time (sec/ ℓ) (sec/cf)										
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90		
TVL25	0	0.015 0.425	0.040 1.138	0.100 2.800	0.210 5.922	0.390 10.998	0.700 19.460	1.200 33.120	-	-		
TVL50	0	0.008 0.113	0.020 0.569	0.050 1.400	0.120 3.384	0.210 5.922	0.400	0.600 16.56	-	-		
TVL75	0	0.005 0.142	0.013 0.370	0.030 0.840	0.080 2.256	0.140 3.948	0.300 8.340	0.400 11.040	-	-		
TVL100	0	0.004 0.113	0.010 0.285	0.025 0.700	0.060 1.692	0.100 2.820	0.160 4.448	0.300 8.280	_	-		
TVL125	0	0.004 0.113	0.008 0.228	0.017 0.476	0.050 1.410	0.100 2.820	0.140 3.892	0.300 8.280	_	_		
TVL150	0	_	0.007 0.199	0.015 0.420	0.040 1.128	0.080 2.256	0.120 3.336	0.180 4.968	_	_		





56 TOTAL VAC.



Mounting style Dimension

Energy Saving Kit Dimension

Vacuum Pumps

7) TVM: Normal Medium Vacuum Standard Type

The most general type of air - driven vacuum pump with multi-stage ventury nozzle. By using only 4 6.2 bar of compressed air, this can get up to -92 kPa of vacuum level. Due to the recent technical development, the new model that can be maintain up to -92 kPa by 5.5 bar of compressed air, came out to the market.

With less compressed air than single-stage nozzle pump, can get more vacuum flow and save more air consumption by using "Energy Saving Kit".

Use of Application - vacuum lifting device (metal sheets, glasses, furniture, and various boards),

liquid filling M/C, vacuum clamp, vacuum packaging/palletizing, vacuum bearing, printing machine, etc.

Performance and Specifications Outline

Max. Va arum Level	Max. 690.17 (mmHg.G) Max92 (kPa) Max27.17 (in Hg)
Max Vacuum Flow	Max. 326 1,724 (/min) Max. 11.511 60.876 (scfm)
Supply Air Condition	Comp ressed Air
Compressed Air Pressure	4 6.2 bar 58.01 89.92 psi
Working Temperature	-20 +80 -4 +176
Noise Level	60 65 dBA

Ordering information

TV		50, 75, 125, 150 - C5, C	6 AP	N	- E . S
TOTAL Vacuum Pump Max. 690.17 Max.	(mmHgG) (mmHgG) (mmHgG) (inHg)	Size Input of Compress Air of Pressure /min) 1 (scfm) - C5: 4 5.8 (bar) 58.01 84.1 (psi) /min) 1 (scfm) - C6: 4 6.2 (bar) 58.01 89.9 (psi) /min) 5 (scfm) (/min) 4 (scfm) (/min) 6 (scfm)	A: Aluminum P: PPS AP: Al+PPS PP: PPS+PPS AA:AI + AI	Material of Seal Kits N: Nitrile V: Viton E: EP DM	Energy Saving Kit & The Other Opt ions -E.S: Energy Saving Kit

Vacuum Fumps

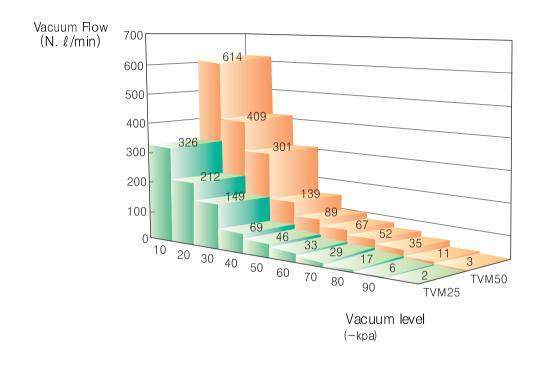
TVM: Normal Medium Vacuum Standard Type

Characteristics / Medium Vacuum

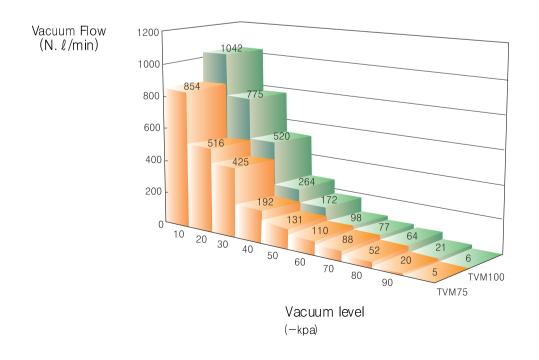
	Max.	Max.	Air	Naiaa	Net	Pipe	Arrangemei	Arrangement (Ø)		
Pump Model	Vacuum (mmHg · G) (-inHg) (-k Pa)	Vacuum Flow (N ℓ /min) (scfm)	Consumption (N ℓ /min) (scfm)	Level (dBA)	Weight (g) (oz)	Compressed Air (mm) (inches)	Vacuum (mm) (inches)	Exhaust (inches)		
TVM25	- 685.5	326 11.511	75~105 2.648~3.708	60~65	645 22.749	>4 0.16″	>12 0.47″	G 3/4″		
TVM50	26.99	614 21.681	150~208 5.297~7.345	60~65	651 22.961	≻6 0.24″	>14 0.55″	G 3/4″		
TVM75	91.4	854 30.1 <i>5</i> 5	232~330 8.192~11.653	60~65	847 29.874	>8 0.32″	>19 0.75″	G 3/4″		
TVM100	679.5	1,042 36.794	300~415 10.593~14.654	60~65	853 30.085	>8 0.32″	>19 0.75″	G 3/4″		
TVM125	26.75 90.6	1,332 47.034	376~544 13.277~19.209	60~65	1,049 36.998	>8 0.32″	>25 0.98″	G 3/4″		
TVM150	90.0	1,724 60.876	448~637 15.819~22.493	60~65	1,055 37.210	>10 0.39″	>25 0.98″	G 3/4″		

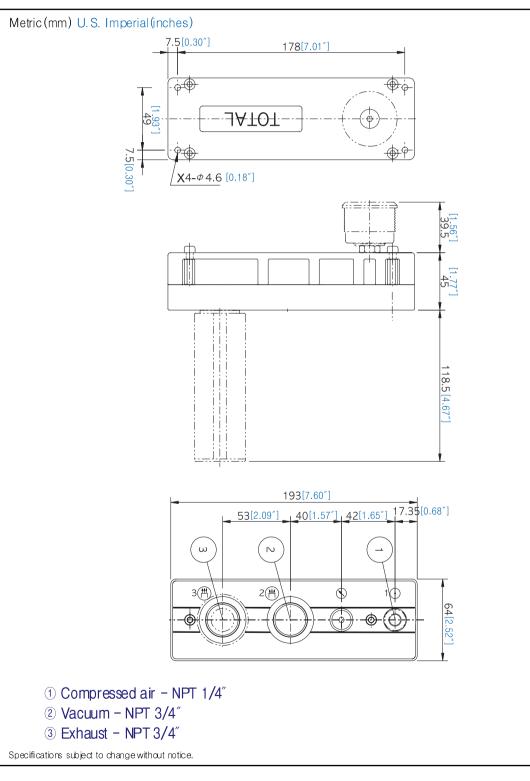
Vacuum flow in (N / /min) (scfm) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

Vacuum Level	Vacuum Flow (N ℓ /min) (scfm)									
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90
TVM25	326	212	149	69	46	33	29	17	6	2
	11.511	7.486	5.261	2.436	1.624	1.165	1.024	0.600	0.212	0.071
TVM50	614	409	301	139	89	67	52	35	11	3
	21.681	14.442	10.629	4.908	3.143	2.366	1.836	1.236	0.388	0.106
TVM75	854	516	425	192	131	98	77	52	16	5
	30.1 <i>5</i> 5	18.220	15.007	6.780	4.626	3.460	2.719	1.836	0.565	0.177
TVM100	1,042	775	520	264	172	110	88	64	21	6
	36.794	27.366	18.362	9.322	6.073	3.884	3.107	2.260	0.742	0.212
TVM125	1,332	914	822	392	217	162	143	88	27	6
	47.034	32.274	29.025	13.842	7.662	5.720	5.049	3.107	0.953	0.212
TVM150	1,724	1,042	891	427	299	204	169	94	34	7
	60.876	36.794	31.462	15.078	10.558	7.203	5.968	3.319	1.201	0.247


Time to evacuate a volume (sec/ l) (sec/cf) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

Vacuum Level	Evacuation Time (sec/ ℓ) (sec/cf)									
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90
TVM25	0	0.015 0.425	0.050 1.415	0.132 3.696	0.240 6.768	0.480 13.536	0.760 21.128	1.190 32.844	1.940 54.708	5.270 149.405
TVM50	0	0.012 0.340	0.030 0.854	0.071 1.988	0.140 3.948	0.240 6.768	0.370 10.286	0.580 16.008	0.980 27.636	2.740 77.679
TVM75	0	0.006 0.170	0.016 0.455	0.034 0.952	0.080 2.256	0.154 4.343	0.292 8.118	0.400 11.040	0.631 17.794	1.720 48.762
TVM100	0	0.006 0.170	0.020 0.569	0.037 1.036	0.071 2.002	0.128 3.610	0.184 5.115	0.312 8.611	0.508 14.326	1.395 39.548
TVM125	0	0.005 0.142	0.011 0.313	0.023 0.644	0.057 1.607	0.096 2.707	0.145 4.031	0.219 6.044	0.410 11.562	1.144 32.432
TVM150	0	0.004 0.113	0.009 0.256	0.024 0.672	0.048 1.354	0.079 2.228	0.122 3.392	0.194 5.354	0.388 10.942	0.899 25.487

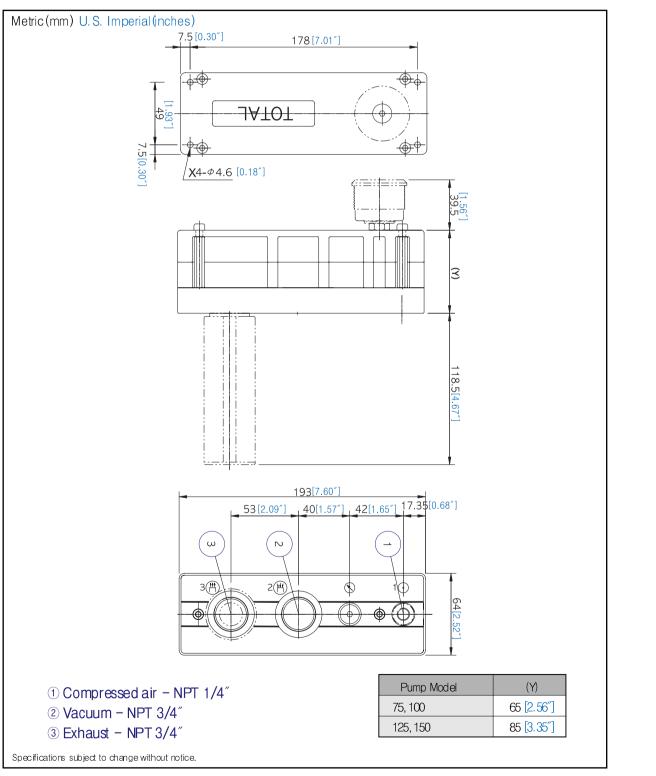


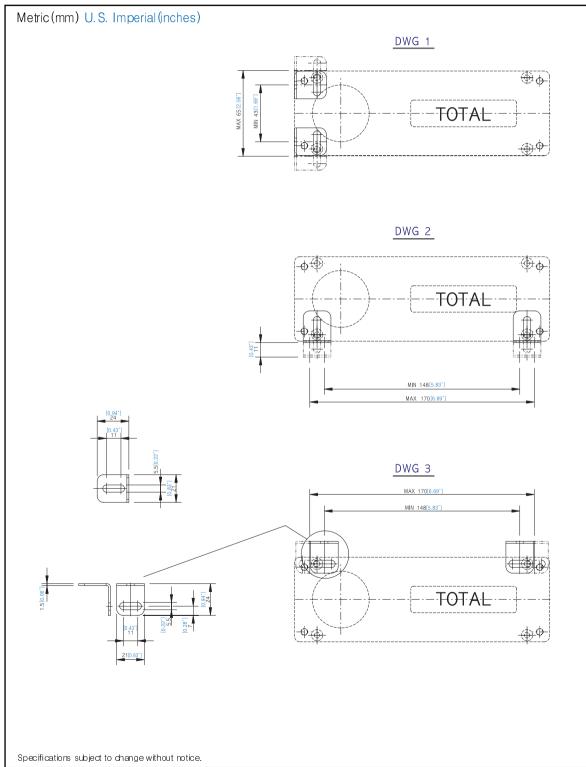


Experimental Performance Curve

Experimental Performance Curve

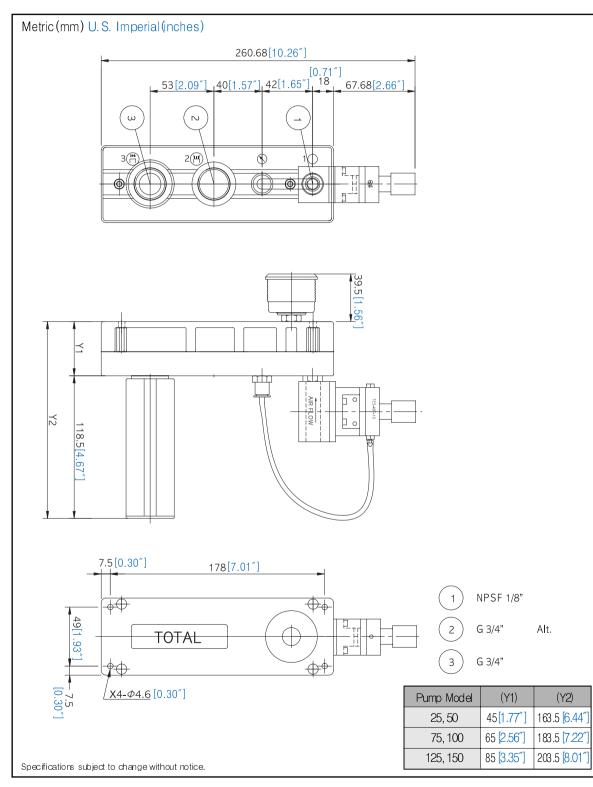
TVM 25/50 SIZE Dimension





TVM 75, 100, 125, 150 SIZE

Dimension


Mounting style Dimension

TOTAL VACUUM TECHNOLOGY

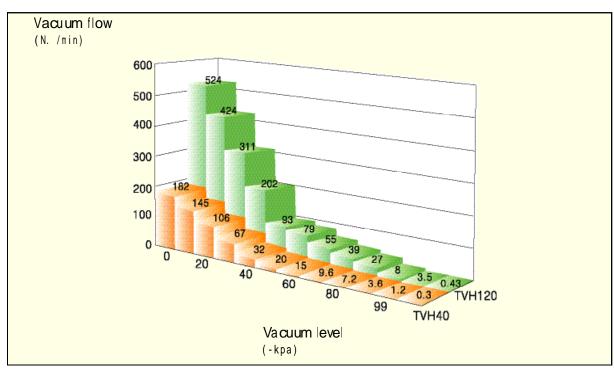
Vacuum Pumps

Energy Saving Kit Dimension

8) TVH: Normal High Vacuum Standard Type

Air-driven vacuum pump with multi-stage ventury nozzle of low vacuum & high flow. By using only 4~7 bar, this realizes up to -100.8 kpa of high vacuum level. Can replace and be compatible with most of electric motor-driven pumps.

Use of Application – laboratory vacuum reactor, degassing process, semiconductor manufacturing reactor, gel Drying, high purified plastic molding


Performance and Specifications Outli	ine
--------------------------------------	-----

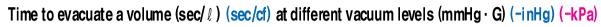
Max. Vacuum Level	Max. 756.19 (mmHg.G) Max100.8 (kPa)				
	Max. —29.77(inHg)				
Max. Vacuum Flow	Max. 524 (/ /min) Max. 18.503 (sc.fm)				
Supply Air Condition	Compressed Air				
Compressed Air Pressure	4~7bar 58.01~101.53 psi				
Working Temperature	-20℃~+80℃ -4°F~+176°F				
Noise Level	58~70 dBA				

TOTAL VACUUM TECHNOLOGY

Ordering information

ΤV	Н	40,120	-C6	AP	Ν	- E . S
Manufacturer	Vacuum Level	Size	Input	Material of	Ma terial o f	Energy
		of	Compressed	Pump Body	seal kits	Saving Kit &
TOTAL Vacuum	H: High Vacuum	VacuumPump	Airof Pressure	A: Aluminum	N: Nitrile	The Other Options
Pump		40:	11035010		IN. INITIC	00110113
	Max.	Max.	Circulating	P: PPS	V:Vit o n	- E . S: Ene rgy
	748.69 750.19	182(/min)	Pressure			Saving Kit
	(mmHgG)	Maria	00	AP : AI+PPS	E:EP DM	
	Max.	Max. 6.427 (scfm)	-C6: 4 6.2 (bar)	PP: PPS+PPS		(SW:Switch Cut-OffV/V,
	-29.47 -29.53	0.427 (00111)	58.01 89.92			Check V/V,
	(inHg)	120:	(psi)	AA A + A		Vacuum
		Max.				Release V/V)
	Max.	524(/min)			1	
	-99.8 - 100 (kPa)	Max.				
		18.503 (scfm)				
<u> </u>						

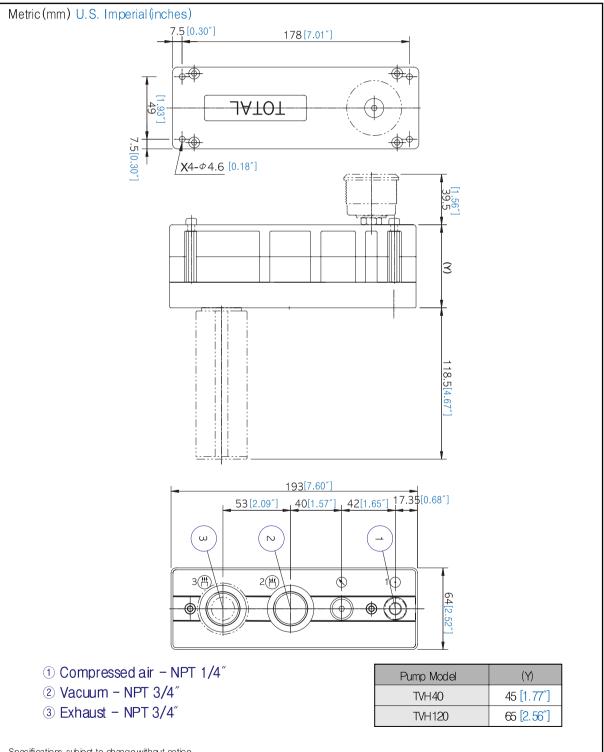
TVH: Normal Medium High Vacuum Level Type Characteristics / High Vacuum

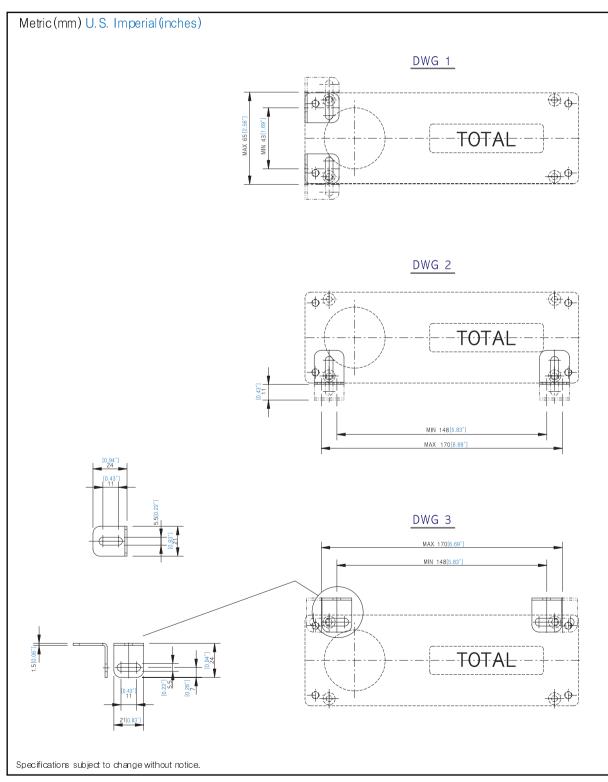

	Max.	Max.	Air	Noise	Net Weight (g) (oz)	Pipe Arrangement (Ø)				
Pump Model	Vacuum (mmHg·G) (-inHg) (-kPa)	Vacuum Flow (N /min) (scfm)	Consumption (N /min) (scfm)	Level (dBA)		Compressed Air (mm) (inches)	Vacuum (mm) (inches)	Exhaust (inches)		
TVH40	748.5 29.47 99.8	182 6.427	158 5.579	58 65	645 22.749	>6 0.24	G 3/4 x1	3/4		
TVH120	756 29.76 100.80	524 18.503	459 16.208	58 65	853 30.085	>8 0.31	G 3/4 x 1	3/4		

Vacuum flow in (N / min) (scfm) at different vacuum levels $(mmHg \cdot G) (-inHg) (-kPa)$

Vacuum Level		Vacuum Flow (N /min) (scfm)												
Pump Model	0 0 0	75 2.95 10	150 5.91 <mark>20</mark>	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 <mark>60</mark>	525 20.67 <mark>70</mark>	600 23.62 <mark>80</mark>	675 26.57 <mark>90</mark>	712.5 28.05 95	742.5 29.23 99	746.2 29.38 99.5	752.2 29.61 103.3
TVH40	182	145	106	67	32	20	15	9.6	7.2	3.6	1.2	0.3	0.1	0.05
	6.427	5.120	3.743	2.366	1.130	0.706	0.530	0.339	0.254	0.127	0.042	0.011	0.004	0.000
TVH120	524	424	311	202	93	79	55	39	27	8	3.5	0.43	0.2	0.1
	18.503	14.972	10.982	7.133	3.284	2.790	1.942	1.377	0.953	0.282	0.124	0.015	0.007	0.004

TOTAL VAC. VACUUM TECHNOLOGY


Vacuum Level		Evacuation Time (sec/ ℓ) (sec/cf)												
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90	712.5 28.05 95	742.5 29.23 99	746.2 29.38 99.5	752.2 29.61 103.3
TVH40	0	0.034 0.962	0.074 2.105	0.140 3.920	0.260 7.332	0.570 16.074	0.930 25.854	1.480 40.848	2.400 67.680	3.600 102.06	5.520 154.56	9.400 266.020	12.500 353.75	16.300 461.29
TVH120	0	0.012 0.340	0.026 0.740	0.058 1.624	0.100 2.820	0.180 5.076	0.300 8.340	0.450 12.420	0.660 18.612	1.240 35.154	1.870 52.36	3.500 99.050	4.220 119.426	6.500 183.95



Specifications subject to change without notice.

Mounting style Dimension

9) T2MM: High Flow Medium Vacuum Type10) T2MX: High Flow Extra Vacuum Type

MM type: Air-driven vacuum pump with standard type of multi-stage nozzle, put together on the large size of duplex base chamber to satisfy both of -91 kPa of vacuum level and high vacuum flow. This is used easily in the process which requires high vacuum flow.

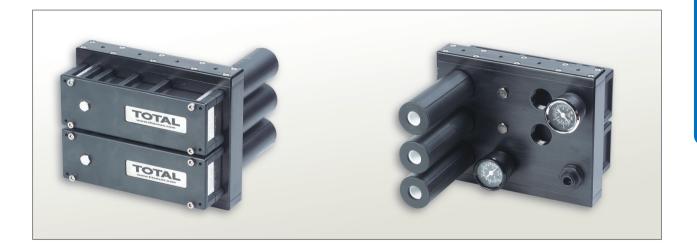
MX type: Air-driven vacuum pump with extra vacuum type of multi-stage nozzle, put together on the large size of duplex base chamber to satisfy both of -96 kPa of vacuum level and high vacuum flow. This is used easily in the process which requires extra vacuum level and a large size of pumping. cf. possible to be joined up to 2,574 (N ℓ /min) of max. vacuum flow.

Performance and Specifications Outline

ММ Туре	MXType
Max. 682.67 (mmHg.G) Max. –26.88 (inHg) Max. –91 (kPa)	Max. 720.18 (mmHg.G) Max. –28.35 (inHg) Max. –96 (kPa)
Max. 2,574 (ℓ /min) Max. 90.890 (sc.fm)	Max. 880 (ℓ /min) Max. 31.073 (sc.fm)
Compressed Air	Compressed Air
4~6.2 bar 58.01~89.92 psi	4.8~7 bar 69.62~101.53 psi
-20°C~+80°C -4°F~+176°F	-20℃~+80℃ -4°F~+176°F
65~78 dBA	65~72 dBA
	Max. 682.67 (mmHg.G) Max26.88 (inHg) Max91 (kPa) Max. 2,574 (<i>l</i> /min) Max. 90.890 (sc fm) Compressed Air 4~6.2 bar 58.01~89.92 psi -20°C~+80°C -4°F~+176°F

TOTAL VACUUM VAC. TECHNOLOGY

T2MM & T2MX Identical Specification, Different Vacuum Level


T2MM: High Flow Medium Vacuum Type

Characteristics / Medium Vacuum

		Max.	Max.	Air	Noise	Net	Pipe	Arrangemei	nt (Ø)
	Pump Aodel	Vacuum (mmHg · G) (-inHg) (-k Pa)	Vacuum Flow (N ℓ /min) (scfm)	Consumption (N ℓ /min) (scfm)	Level (dBA)	Weight (g) (oz)	Compressed Air (mm) (inches)	Vacuum (inches)	Exhaust (inches)
T2	2MM100	685.5	1,230 43.432	300~416 10.598~14.689	60~65	2,894 102.071	>8 0.32″	G 3/4″ x 2	G 3/4″ x 3
T2	2MM150	26.99	1,812 63.983	450~632 15.890~22.316	60~65	3,202 112.935	>8 0.32″	G 3/4″ x 2	G 3/4″ x 3
T2	2MM200	91.4	2,574 90,890	600~784 21.186~27.684	60~65	3,202 112.935	>10 0.39″	G 3/4″ x 2	G 3/4″ x 3

Time to evacuate a volume (sec/ l) (sec/cf) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

Vacuum Level		Evacuation Time (sec/ /) (sec/cf)									
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90	
T2MM100	0	0.004 0.113	0.018 0.512	0.026 0.728	0.059 1.664	0.110 3.102	0.170 4.726	0.280 7.728	0.480 13.536	1.400 39.690	
T2MM150	0	0.004 0.113	0.011 0.313	0.021 0.588	0.042 1.184	0.076 2.143	0.123 3.420	0.210 5.796	0.369 10.406	0.872 24.721	
T2MM200	0	0.002 0.057	0.006 0.171	0.013 0.364	0.032 0.902	0.058 1.636	0.095 2.641	0.158 4.361	0.280 7.896	0.684 19.391	

Vacuum flow in (N / /min) (scfm) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

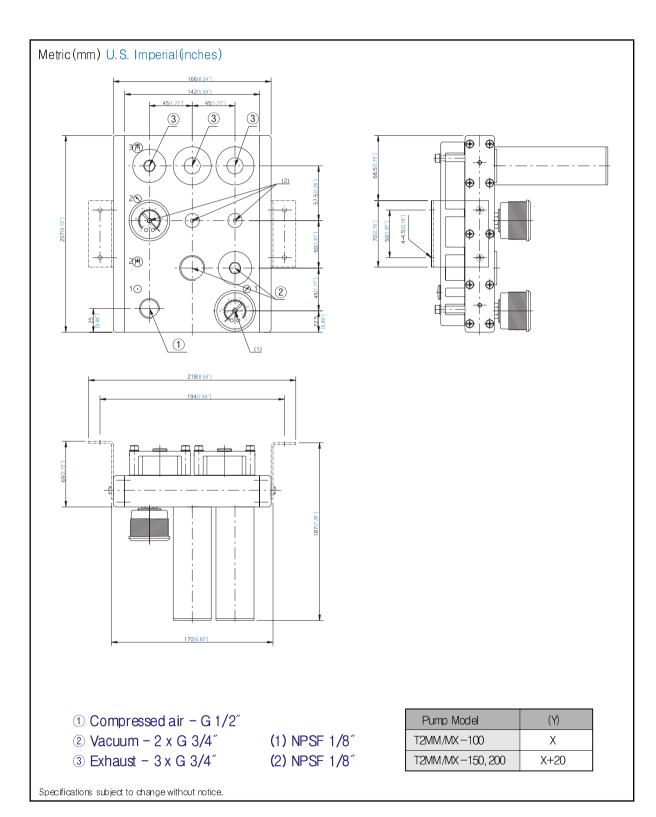
Vacuum _ Level	Vacuum Flow (N / /min) (scfm)											
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90		
T2MM100	1,230	1,070	759	358	183	137	92	50	22	3.4		
	43.432	37.782	26.801	12.641	6.462	4.838	3.249	1.766	0.777	0.120		
T2MM150	1,812	1,522	1,084	509	263	194	132	71	31.4	4.8		
	63.983	53.743	38.277	17.9 7 3	9.287	6.850	4.661	2.507	1.109	0.169		
T2MM200	2,574	1,798	1,188	616	309	254	161	93	43.2	7.2		
	90.890	63.489	41.949	21.751	10.911	8.969	5.685	3.284	1.525	0.254		

T2MX: High Flow Extra Vacuum Type

Characteristics / Medium Vacuum

		Max.	Max. Air Vacuum		Noise	Net	Pipe Arrangement (Ø)				
Pum Mod		Vacuum (mmHg · G) (-inHg) (-k Pa)	Vacuum Flow (N ℓ /min) (scfm)	Consumption (N ℓ /min) (scfm)	Level (dBA)	Weight (g) (oz)	Compressed Air (mm) (inches)	Vacuum (inches)	Exhaust (inches)		
T2MX	(100	725	438 15.466	427~536 15.078~18.927	65~68	2,894 102.071	>8 0.32″	G 3/4″ x 2	G 3/4″ x 3		
T2MX	(150	28.54	612 21.610	542~674 19.138~23.799	65~68	3,202 112.935	>8 0.32″	G 3/4″ × 2	G 3/4″ x 3		
T2MK	200	96.67	880 21.073	688~818 24.294~28.884	65~68	3,202 112.935	>10 0.39″	G 3/4″ x 2	G 3/4″ x 3		

Time to evacuate a volume (sec/ ℓ) (sec/cf) at different vacuum levels (mmHg · G) (-inHg) (-kPa)


Vacuum _ Level		Evacuation Time (sec/ l) (sec/cf)												
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90	712 28.03 95			
T2MX100	0	0.012 0.340	0.038 1.081	0.068 1.904	0.168 4.738	0.198 5.584	0.238 6.616	0.372 10.267	0.550 15.510	0.880 24.948	1.080 30.240			
T2MX150	0	0.009 0.255	0.027 0.7682	0.051 1.428	0.090 2.538	0.108 3.046	0.164 4.559	0.244 6.734	0.360 10.152	0.650 18.428	0.740 20.720			
T2MX200	0	0.006 0.170	0.0192 0.5462	0.038 1.064	0.040 1.128	0.088 2.482	0.120 3.336	0.192 5.299	0.290 8.178	0.480 13.698	0.580 16.240			

Vacuum flow in (N / /min) (scfm) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

Vacuum _ Level		Vacuum Flow (N & /min) (scfm)									
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90	712 28.03 95
T2MK100	438	269	187	124	101	85	77	66.2	39.2	26	5.7
	15.466	9.499	6.603	4.379	3.566	3.001	2.719	2.338	1.384	0.918	0.201
T2MX150	612	391	277	193	151	125	117	95.1	59	40.5	8.1
	21.610	13.806	9.781	6.815	5.332	4.414	4.131	3.358	2.083	1.430	0.286
T2MX200	880	550	391	272	212	178	166	134	83	57	11.4
	31.073	19.421	13.806	9.605	7.486	6.285	5.862	4.732	2.931	2.013	0.403

T2MM/MX(Dimension)

11) T2HX: High Flow High Vacuum Type

Air-driven vacuum pump with HX type of multi-stage nozzle, put together on the large size of duplex base chamber to satisfy both of -100.8 kPa of vacuum level and max. 756 mmHg.G of high vacuum flow.

► Use of Application - semiconductor manufacturing facility, rotary vacuum pump prohibition degassing works, etc.

Performance and Specifications Outline

Max. Vacuum Level
Max. Vacuum Flow
Supply Air Condition
Compressed Air Pressure
Working Temperature
Noise Level

area, laboratory leakage tester, clean system facility, high vacuum 1st

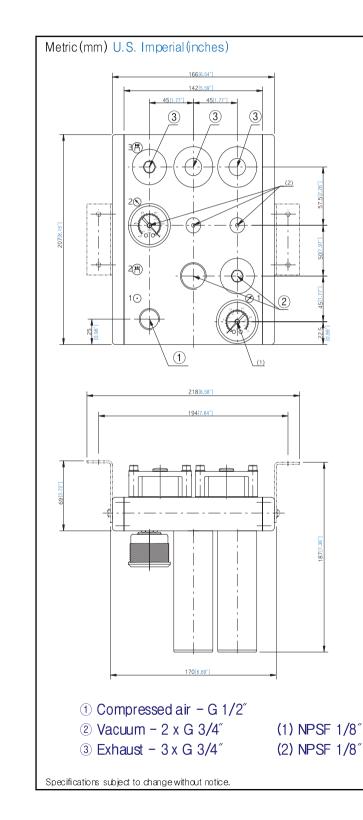
T2HX Type

Max. 756.19 (mmHg.G) Max100.8 (kPa)								
Max. —29.77(inHg)								
Max. 2,023 (ℓ/min) Max. 71.434 (sc.fm)								
Compressed Air								
5.6~7.2 bar 81.22~104.43 psi								
-20°C~+80°C -4°F~+176°F								
65~75 dBA								

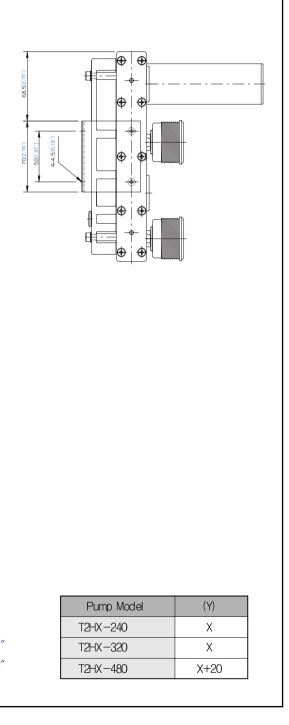
T2HX: High Flow High Vacuum Type

Characteristics / High Vacuum

	Max.	Max.	Air	Noise	Net	Pipe	Arrangemer	nt (Ø)
Pump Model	Vacuum (mmHg · G) (-inHg) (-k Pa)	Vacuum Flow (N ℓ /min) (scfm)	Consumption (N ℓ /min) (scfm)	Level (dBA)	Weight (g) (oz)	Compressed Air (mm) (inches)	Vacuum (inches)	Exhaust (inches)
T2HX24	0 ₇₅₆	1,028 36.299	908 32.062	58~65	2,902 102.354	>10 0.39″	G 3/4″ x 2	G 3/4″ x 2
T2HX32		1,512 53.390	1,440 50.847	58~70	3,210 113.217	>12 0.47″	G 1 1/2″ x 2	G 11/2″ ×2
T2HX48	0 100.8	2,023 71.434	1,890 66.737	60~72	3,820 134.731	>10 1/2″	G 1 1/2″ x 2	G 11/2″ x2


Vacuum flow in (N l /min) (scfm) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

Vacuum Level		Vacuum Flow (N / /min) (scfm)										
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90	712.5 28.05 95	746.2 29.38 99.5
T2HX240	1,028	775	553	319	190	153	119	82	56.3	14.8	2.7	1.2
	36.299	27.366	19.527	11.264	6.709	5.403	4.202	2.895	1.988	0.523	0.095	0.042
T2HX320	1,512	1,147	818	473	282	226	174	121	83.4	21.8	3.88	2.1
	53.390	40.501	28.884	16.702	9.958	7.980	6.144	4.273	2.945	0.770	0.137	0.074
T2HX480	2,023	1,537	1,099	624	299	254	211	139	101	28	5.7	3.6
	71.434	54.273	38.806	22.034	10.558	8.969	7.451	4.908	3.566	0.989	0.201	0.127

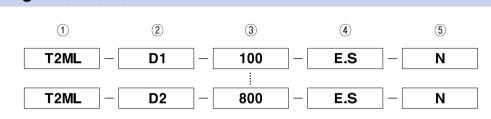

Time to evacuate a volume (sec/ l) (sec/cf) at different vacuum levels (mmHg \cdot G) (-inHg) (-kPa)

Vacuum Level		Evacuation Time (sec/ l) (sec/cf)										
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90	712.5 28.05 95	746.2 29.38 99.5
T2HX240	0	0.007 0.198	0.016 0.455	0.032 0.896	0.068 1.918	0.140 3.948	0.180 5.004	0.290 8.004	0.380 10.716	0.680 19.278	1.120 31.360	2.420 68.486
T2HX320	0	0.005 0.142	0.013 0.370	0.026 0.728	0.043 1.213	0.089 2.510	0.105 2.919	0.230 6.348	0.290 8.178	0.500 14.1 <i>7</i> 5	0.840 23.520	1.780 50.374
T2HX480	0	0.004 0.113	0.009 0.256	0.020 0.560	0.038 1.072	0.060 1.692	0.080 2.224	0.140 3.864	0.190 5.358	0.390 11.057	0.580 16.240	1.240 35.092

T2HX

12) T2ML-D1/D2 (U): Low Vacuum Unification Type

Air-driven vacuum pump with ML type of multi-stage nozzle, put together on the large integrated aluminum connection plate to realize a large size of vacuum pump of low vacuum & high flow. This product has a large size of vacuum and exhaust port (G 1 $1/2'' \sim G 2''$) and high momentary speed of suction, therefore, this is suitable for vacuum conveyor or vacuum holding use. If you apply this product to the system to be designed in the field of vacuum conveying or holding, you can get maximum efficiency. Also Energy Saving Kit can be equipped.


▶ Use of Application – vacuum conveyor, vacuum lifting device, vacuum holding, vacuum filling, vacuum bearing, etc.

Performance and Specification Outline

T2ML Series	T2ML-D1	T2ML-D2		
Max. Vacuum Level	Max. 562.64 (mmHgG) Max. –22.15 (inHg) Max. –75 (kPa)	Max. 562.64 (mmHgG) Max. –22.15 (inHg) Max. –75 (kPa)		
Max. Vacuum Flow	Max. 3,910 (<i>l</i> /min) Max. 138.065 (scfm)	Max. 11,800 (ℓ /min) Max. 416.667 (scfm)		
Supply Air Condition	Compressed Air	Compressed Air		
Supply Air Pressure	3.33~5.49 (bar) 3.4~5.6 (kg.f/cm²) 48.36~79.65 (psi)	3.33~5.49 (bar) 3.4~5.6 (kg.f/cm²) 48.36~79.65 (psi)		
Working Temperature	-20℃~+80℃ -4°F~+176°F	-20℃~+80℃ -4°F~+176°F		
Noise Level	65~70 dBA	65~70 dBA		

Ordering information

(1) Basic Model

T2ML : Low vacuum (-75 kpa) - medium & large integrated

2 Pumps Arrangement

- -D1 : 1 (one) column multi array (100, 150, 200, 300)
- -D2 : 2(two) column multi array (100, 150, 200, 300, 400, 600, 800)

3 Pump's Size: classified by max. vacuum flow

100	Max. 1,288 (N <i>l</i> /min)	Max. 45.480 (scfm)
150	Max. 1,920 (N <i>l</i> /min)	Max. 67.797 (scfm)
200	Max. 2,650 (N <i>l</i> /min)	Max. 93.573 (scfm)
300	Max. 3,910 (N ℓ/min)	Max. 138.065 (scfm)
400	Max. 5,360 (N <i>l</i> /min)	Max. 189.266 (scfm)
600	Max. 7,944 (N <i>l</i> /min)	Max. 280.508 (scfm)
800	Max. 11,800 (N ℓ /min)	Max. 41 6.667 (scfm)

④ Energy Saving Kit

-None: Not equipped with Energy Saving Kit

-E.S : To save air consumption, it is combined with vacuum valve, vacuum switch, and pneumatic valve (about 38% of air consumption's saving effect)

(5) Material of Check V/V & Seal Kit's

-None: the same with "N"

Ν	Nitri le	Hexane, petrol, Me Hanel Res
v	Viton	C₄H₀, Xylene, C₅H₅Resistible
Е	EPDM	03. Ammonia, Ethane Resisti

ΤΟΤΑΙ TECHNOLOG

esistible	For details.
e	pls. refer to Chemical Resistance Data
tible	(on page 204)

T2ML-D1: High Flow Low Vacuum Level Type

Characteristics / Low Vacuum

	Max.	Max.	Air	Naiaa	Net	Pipe Arrangement (\varnothing)			
Pump Model	Vacuum (mmHg · G) (-inHg) (-k Pa)	Vacuum Flow (N ℓ /min) (scfm)	Consumption (N ℓ /min) (scfm)	ℓ/min) Level (dBA)	Weight (g) (oz)	Air In-put (inches)	Vacuum (inches)	Exhaust (inches)	
T2ML-D1-100	562.5 22.15 75	1,288 45.480	360~425 12.712~15.007	68	3,000 105.81	G 1/2″	G 11/2″	G 11/2″	
T2ML-D1-150	562.5 22.15 75	1,920 67.797	536~630 18.927~22.246	68	3,600 126.972	G 1/2″	G 11/2″	G 11/2″	
T2ML-D1-200	562.5 22.15 75	2,650 93.573	720~848 25.424~29.944	70	4,200 148.134	G 1/2″	G 11/2″	G 11/2″	
T2ML-D1-300	562.5 22.15 75	3,910 138.065	1,100~1,298 38.842~45.833	70	5,300 186.931	G 1/2″	G 11/2″	G 11/2″	

Vacuum flow in (N / /min) (scfm) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

Vacuum Level		Vacuum Flow (N l /min) (scfm)										
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	562.64 22.15 75			
T2ML-D1-100	1,288	1,082	764	371	194	143	95	54	23			
	45.480	38.206	26.977	13.100	6.850	5.049	3.355	1.907	0.812			
T2ML-D1-150	1,920	1,550	1,118	519	273	206	142	77	33			
	67.797	54.732	39.477	18.326	9.640	7.274	5.014	2.719	1.165			
T2ML-D1-200	2,650	1,812	1,248	628	314	260	171	99	47			
	93.573	63.983	44.068	22.1 <i>7</i> 5	11.088	9.181	6.038	3.496	1.660			
T2ML-D1-300	3,910	2,270	1,721	788	509	399	328	152	69			
	138.065	80.155	60.7 7 0	27.825	17.973	14.089	11.582	5.367	2.436			

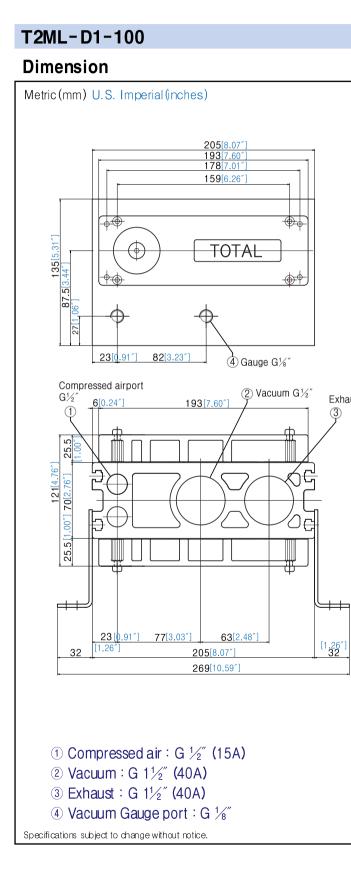
T2ML-D2: High Flow Low Vacuum Level Type

Characteristics / Low Vacuum

	Max.	Max. Vacuum	Air	Noise	Net	Pipe Arrangement (\emptyset)			
Pump Model	Vacuum (mmHg · G) (-inHg) (-k Pa)	Flow (N ℓ /min) (scfm)	Consumption (N ℓ /min) (scfm)	Level (dBA)	Weight (g) (oz)	Air In-put (mm) (inches)	Vacuum (inches)	Exhaust (inches)	
T2ML-D2-100	562.5 22.15 75	1,288 45.480	360~425 12.712~15.007	68	3,100 109.337	G 1/2″	G 11/2″	G 1 1/2″	
T2ML-D2-150	562.5 22.15 75	1,920 67.797	536~630 18.927~22.246	68	3,600 126.972	G 1/2″	G 1 1/2″	G 1 1/2″	
T2ML-D2-200	562.5 22.15 75	2,650 93.573	7 20~848 25.424~29.944	70	4,200 148.134	G 1/2″	G 1 1/2″	G 1 1/2″	
T2ML-D2-300	562.5 22.15 75	3,910 138.065	1,100~1,298 38.842~45.833	70	5,300 186.931	G 1/2″	G 1 1/2″	G 1 1/2″	
T2ML-D2-400	562.5 22.15 75	5,360 189.266	1,500~1,770 52.966~62.500	72	6,400 225.728	G 1/2″	G 1 1/2″	G 1 1/2″	
T2ML-D2-600	562.5 22.15 75	7,944 280.508	2,200~2,620 77.684~92.514	72	8,600 303.322	G 3/4″	G 2″	G 2″	
T2ML-D2-800	562.5 22.15 75	11,800 416.667	3,310~3,890 116.879~137.359	74	10,800 380.916	G 3/4″	G 2″	G 2″	

Vacuum flow in (N / /min) (scfm) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

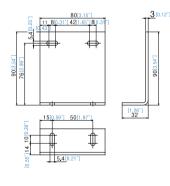
Vacuum Level		Vacuum Flow (N & /min) (scfm)									
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	562.64 22.15 75		
T2ML-D2-100	1,288	1,082	764	371	194	143	95	54	23		
	45.480	38.206	26.977	13.100	6.850	5.049	3.355	1.907	0.812		
T2ML-D2-150	1,920	1,550	1,118	519	273	206	142	77	33		
	67.797	54.732	39.477	18.326	9.640	7.274	5.014	2.719	1.165		
T2ML-D2-200	2,650	1,812	1,248	628	314	260	171	99	47		
	93.573	63.983	44.068	22.1 <i>7</i> 5	11.088	9.181	6.038	3.496	1.660		
T2ML-D2-300	3,910	2,270	1,721	788	509	399	328	152	69		
	138.065	80.155	60.770	27.825	17.973	14.089	11.582	5.367	2.436		
T2ML-D2-400	5,360	3,700	2,484	1,278	628	477	318	174	85		
	189.266	130.650	87.712	45.127	22.175	16.843	11.229	6.144	3.001		
T2ML-D2-600	7,944	5,114	3,790	1,738	987	856	419	247	104		
	280.508	180.579	133.828	61.370	34.852	30.226	14.795	8.722	3.672		
T2ML-D2-800	11,800	7,340	4,960	2,570	1,148	929	619	334	157		
	416. <i>6</i> 67	259.181	175.141	90.749	40.537	32.804	21.857	11.794	5.544		

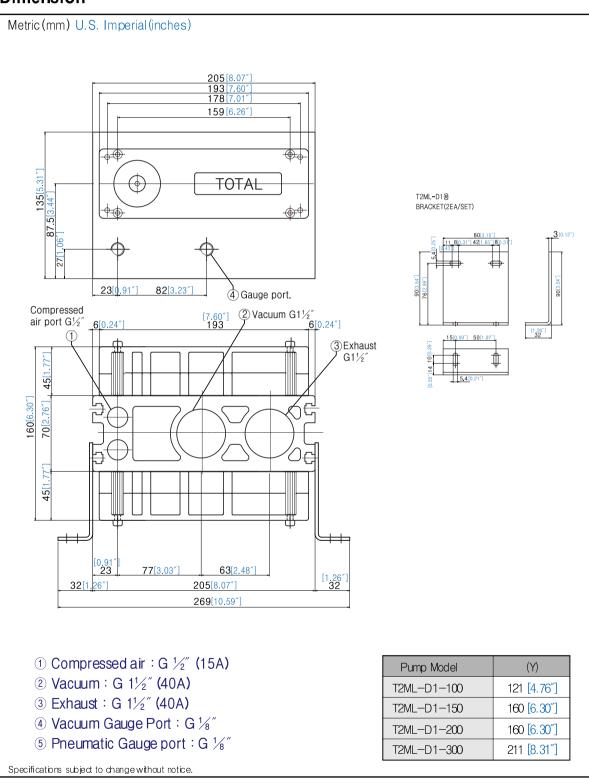

TOTAL VAC. VACUUM TECHNOLOGY

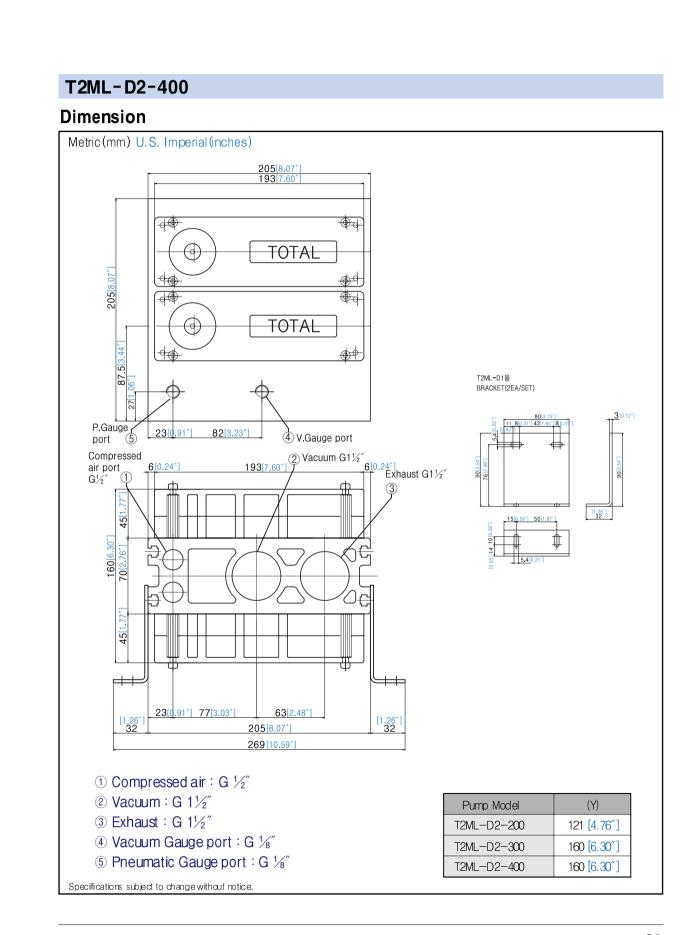
Vacuum Level		Evacuation Time (sec/ l) (sec/cf)										
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	563 22.15 75			
T2ML-D1-100	0	0.007 0.198	0.016 0.455	0.032 0.896	0.060 1.692	0.100 2.820	0.150 4.170	0.200 5.520	0.220 6.204			
T2ML-D1-150	0	0.005 0.142	0.013 0.370	0.024 0.672	0.050 1.440	0.080 2.256	0.110 3.058	0.170 4.692	0.185 5.217			
T2ML-D1-200	0	0.004 0.113	0.009 0.256	0.010 0.280	0.040 1.128	0.060 1.692	0.070 1.946	0.130 3.588	0.150 4.230			
T2ML-D1-300	0	0.003 0.085	0.008 0.228	0.016 0.448	0.025 0.705	0.030 0.846	0.065 1.807	0.090 2.484	0.100 2.820			

Time to evacuate a volume (sec/ l) (sec/cf) at different vacuum levels (mmHg · G) (-i nHg) (-kPa)

Vacuum Level		Evacuation Time (sec/ l) (sec/cf)											
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	563 22.15 75				
T2ML-D2-100	0	0.006 0.170	0.010 0.285	0.028 0.784	0.050 1.410	0.090 2.538	0.140 3.892	0.190 5.244	0.200 5.640				
T2ML-D2-150	0	0.005 0.142	0.013 0.370	0.024 0.672	0.045 1.269	0.070 1.974	0.100 2.780	0.160 4.416	0.180				
T2ML-D2-200	0	0.004 0.113	0.009 0.256	0.018 0.504	0.040 1.128	0.060 1.692	0.080 2.224	0.120 3.312	0.140 3.948				
T2ML-D2-300	0	0.003 0.085	0.008 0.228	0.014 0.392	0.020 0.564	0.030 0.846	0.060 1.668	0.080 2.208	0.009				
T2ML-D2-400	0	0.002 0.057	0.004 0.114	0.007 0.196	0.014 0.395	0.030 0.846	0.050 1.390	0.073 2.015	0.008				
T2ML-D2-600	0	0.002 0.057	0.003 0.085	0.005 0.140	0.011 0.310	0.022 0.620	0.038 1.056	0.059 1.628	0.006 1.692				
T2ML-D2-800	0	0.001 0.028	0.002 0.057	0.004 0.112	0.008	0.014 0.395	0.025 0.695	0.040	0.046 1.297				

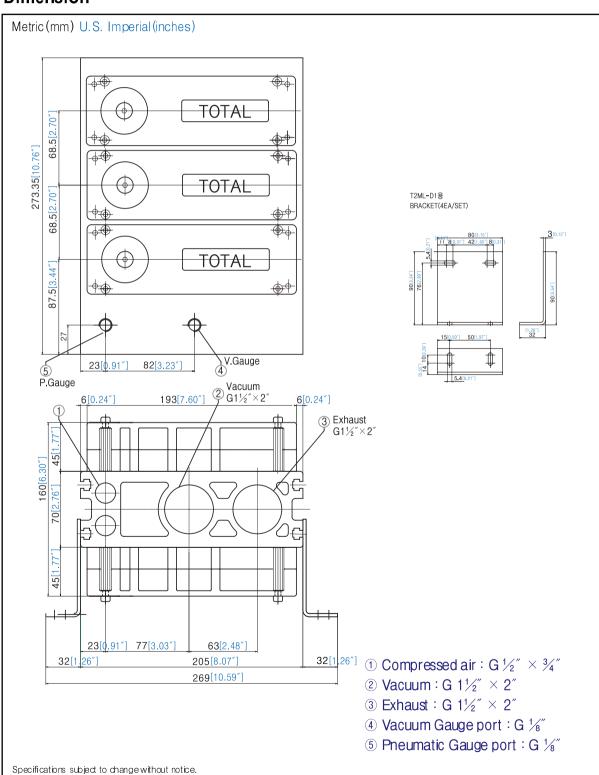

-1 -) ($() (| | | | | |) (| | | D_{\alpha})$ 1 . / . .

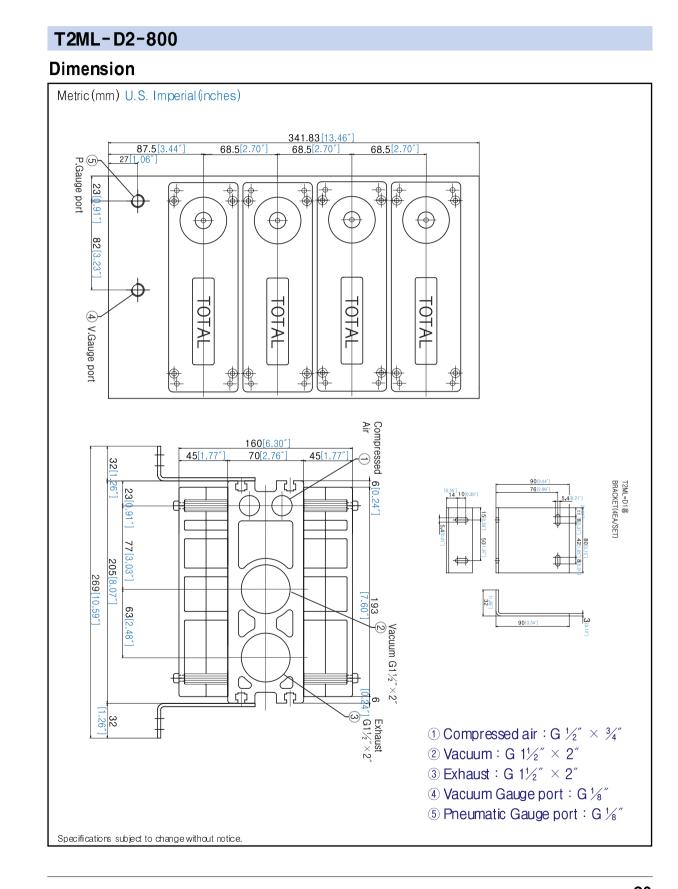




T2ML-D1-200

Dimension



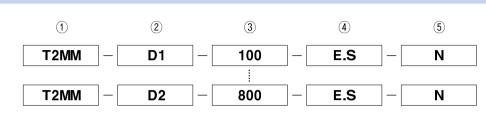


T2ML-D2-600

Dimension

Vacuum Pumps

13) T2MM-D1/D2 (U): Normal Medium Vacuum Unification Type


Air-driven vacuum pump with MM type of multi-stage nozzle, put together on the large of integrated aluminum connection plate to realize various vacuum flows from the medium size of vacuum pump to the large size of vacuum pump. For having the large size of vacuum and exhaust port (G 1 1/2"), this product can replace the large size of electric motor driven vacuum pumps and can also be equipped with Energy Saving Kit to save air consumption. With various vacuum & pressure switches, this enables you to design various vacuum automation system with PLC and RELAY.

Performance and Specification Outline

T2MM Series	T2MM-D1	T2MM-D2			
Max. Vacuum Level	Max. 682.67 (mmHgG) Max. –26.88 (inHg) Max. –91 (kPa)	Max. 682.67 (mmHgG) Max. –26.88 (inHg) Max. –91 (kPa)			
Max. Vacuum Flow	Max. 3,680 (N <i>l</i> /min) Max. 129.944 (scfm)	Max. 10,600 (N <i>l</i> /min) Max. 374.294 (scfm)			
Supply Air Condition	Compressed Air	Compressed Air			
Supply Air Pressure	3.33~5.69 (bar) 3.4~5.8 (kg.f/cm²) 48.36~82.50 (psi)	3.33~5.69 (bar) 3.4~5.8 (kg.f/cm²) 48.36~82.50 (psi)			
Working Temperature	-20℃~+80℃ -4°F~+176°F	-20℃~+80℃ -4°F~+176°F			
Noise Level	67~72 dBA	67~72 dBA			

Ordering information

(1) Basic Model

T2MM: Medium vacuum (-91 kpa) - medium & large integrated

2 Pumps Arrangement

-D1: 1 (one) column multi array (100, 150, 200, 300)

-D2: 2(two) column multi array (100, 150, 200, 300, 400, 600, 800)

3 Pump's Size: classified by max. vacuum flow

100	Max. 1,240 (N <i>l</i> /min)	Max. 43.785 (sc.fm)
150	Max. 1,800 (N <i>l</i> /min)	Max. 63.559 (sc.fm)
200	Max. 2,490 (N ℓ /min)	Max. 87.924 (sc.fm)
300	Max. 3,680 (N <i>l</i> /min)	Max. 129.944 (scfm)
400	Max. 5,180 (N <i>l</i> /min)	Max. 182.910 (scfm)
600	Max. 7,800 (N <i>l</i> /min)	Max. 275.424 (scfm)
800	Max. 10,600 (N ℓ/min)	Max. 374.294 (scfm)

cf. This is based on vacuum flow possible producing 500, 700

④ Energy Saving Kit

-None: Not equipped with Energy Saving Kit

-E.S: To save air consumption, it is combined with vacuum valve, vacuum switch, and pneumatic valve (about 38% of air consumption's saving effect)

5 Material of Check V/V, Seal Kit's

-None: the same with "N"

Ν	Nitri le	Hexane, petrol, Me Hanel Resistib
V	Viton	C4 H10, Xylene, C6 H6Resistible
Е	EPDM	03. Ammonia, Ethane Resistible

TOTA TECHNOLOG

ble	For details,
	pls. refer to Chemical Resistance Data
	(on page 204)

T2MM-D1: Normal Medium Vacuum Unification Type

Characteristics / Medium Vacuum

Pump (mmHg Model (-inH	Max.	Max.	Air	Noise	Net	Pipe Arrangement (\emptyset)			
	Vacuum (mmHg · G) (-inHg) (-k Pa)	Vacuum Flow (N ℓ /min) (scfm)	Consumption (N ℓ /min) (scfm)	Level (dBA)	Weight (g) (oz)	Compressed Air (inches)	Vacuum (inches)	Exhaust (inches)	
T2MM-D1-100		1,240 43,785	290~413 10.240~14.583	68	3,100 109.337	G 1/2″	G 11/2″	G 11/2″	
T2MM-D1-150	682.5	1,800 63.559	458~610 16.172~21.540	68	3,600 126.972	G 1/2″	G 1 1/2″	G 11/2″	
T2MM-D1-200	26.87	2,490 87.924	620~828 21.893~29.237	70	4,200 148.134	G 1/2″	G 1 1/2″	G 11/2″	
T2MM-D1-300	91.00	3,680 129.944	916~1,224 32.345~43.220	71	5,300 186.931	G 1/2″	G 1 1/2″	G 11/2″	
T2MM-D1-400		5,180 182.910	1,280~1,710 45.198~60.381	72	6,400 225.728	G 1/2″	G 11/2″	G 11/2″	

T2MM-D2: Normal Medium Vacuum Unification Type

Characteristics / Medium Vacuum

	Max.	Max.	Air	Noise	Net Weight (g) (oz)	Pipe Arrangement (Ø)			
Pump Model	Vacuum (mmHg · G) (-inHg) (-k Pa)	Vacuum Flow (Nℓ/min) (scfm)	Consumption (N ℓ /min) (scfm)	Level (dBA)		Compressed Air (inches)	Vacuum (inches)	Exhaust (inches)	
T2MM-D2-100		1,240 43.785	290~413 10.240~14.583	68	3,100 109.337	G 1/2″	G 1 1/2″	G 11/2″	
T2MM-D2-150		1,800 63.559	458~610 16.172~21.540	68	3,600 126.972	G 1/2″	G 1 1/2″	G 11/2″	
T2MM-D2-200	682.5	2,490 87.924	620~828 21.893~29.237	70	4,200 148.134	G 1/2″	G 1 1/2″	G 11/2″	
T2MM-D2-300	26.87	3,680 129.944	916~1,224 32.345~43.220	71	5,300 186.931	G 1/2″	G 11/2″	G 11/2″	
T2MM-D2-400	91.00	5,180 182.910	1,280~1,710 45.198~60.381	72	6,400 225.728	G 1/2″	G 1 1/2″	G 11/2″	
T2MM-D2-600		7,800 275.424	1,816~2,580 64.124~91.102	74	8,600 303.322	G 1/2″ x G3/4″	G 1/2″ x G2″	G 1 1/2″ x G2″	
T2MM-D2-800		10,600 374.294	2,610~3,500 92.161~123.588	74	10,800 380.916	G 1/2″ x G3/4″	G 1/2" x G2"	G11/2″ x G2″	

Vacuum flow in (N / /min) (scfm) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

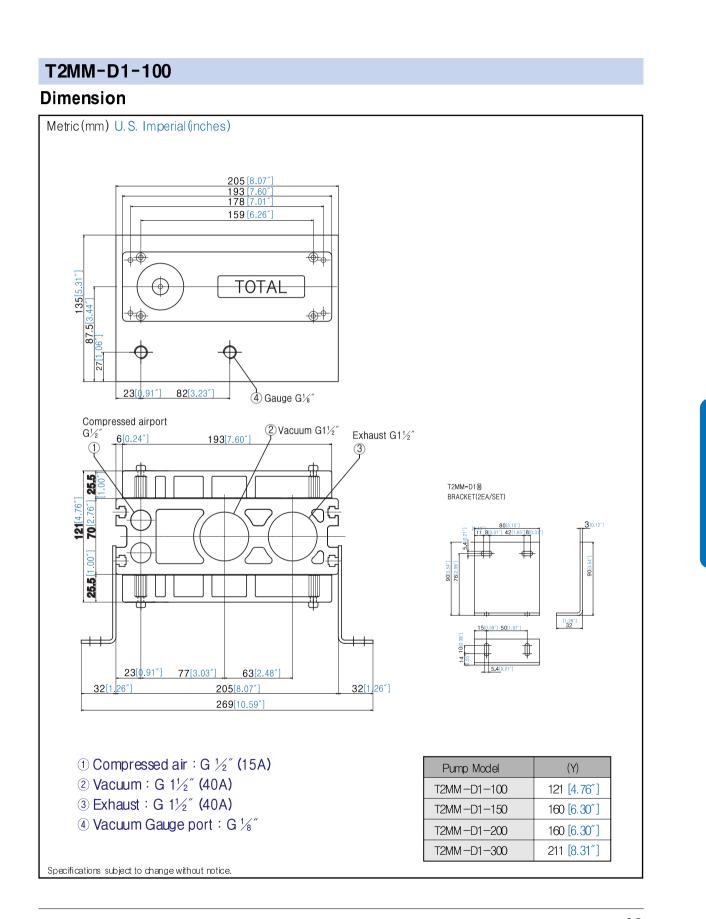
Vacuum Level		Vacuum Flow (N / /min) (scfm)										
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90		
T2MM-D1-100	1,240	1.082	764	370	193	140	95	54	23	3.3		
	43.785	38.206	26.977	13.065	6.815	4.944	3.355	1.907	0.812	0.117		
T2MM-D1-150	1,800	1,496	1,120	515	272	206	140	75	30	4.5		
	63.559	52.825	39.548	18.185	9.605	7.274	4.944	2.648	1.059	0.159		
T2MM-D1-200	2,490	1,810	1,238	630	322	266	165	96	44	6.3		
	87.924	63.912	43.715	22.246	11.370	9.393	5.826	3.390	1.554	0.222		
T2MM-D1-300	3,680	2,140	1,680	780	510	387	295	142	52	9.8		
	129.944	75.565	59.322	27.542	18.008	13.665	10.417	5.014	1.836	0.346		
T2MM-D1-400	5,180	3,555	2,390	1,188	634	466	318	179	75	14.2		
	182.910	125.530	84.393	41.949	22.387	16.455	11.229	6.321	2.648	0.501		

Vacuum flow in (N ℓ /min) (scfm) at different vacuum levels (mmHg \cdot G) (-inHg) (-kPa)

Vacuum Level		Vacuum Flow (N / /min) (scfm)											
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90			
T2MM-D2-100	1,240	1.082	764	370	193	140	95	54	23	3.3			
	43.785	38.206	26.977	13.065	6.815	4.944	3.355	1.907	0.812	0.117			
T2MM-D2-150	1,800	1,496	1,120	515	272	206	140	75	30	4.5			
	63.559	52.825	39.548	18.185	9.605	7.274	4.944	2.648	1.059	0.159			
T2MM-D2-200	2,490	1,810	1,238	630	322	266	165	96	44	6.3			
	87.924	63.912	43.715	22.246	11.370	9.393	5.826	3.390	1.554	0.222			
T2MM-D2-300	3,680	2,140	1,680	780	510	387	295	142	52	9.8			
	129.944	75.565	59.322	27.542	18.008	13.665	10.417	5.014	1.836	0.346			
T2MM-D2-400	5,180	3,555	2,390	1,188	634	466	318	179	75	14.2			
	182.910	125.530	84.393	41.949	22.387	16.455	11.229	6.321	2.648	0.501			
T2MM-D2-600	7,800	5,400	3,592	1,844	947	683	457	254	116	20.5			
	275.424	190.678	126.836	65.113	33.439	24.117	16.137	8.969	4.096	0.724			
T2MM-D2-800	10,600	7,410	4,780	2,515	1,282	912	608	328	159	26.4			
	374. <i>2</i> 94	261.653	168.785	88.806	45.268	32.203	21.469	11.582	5.614	0.932			

TOTAL VACUUM TECHNOLOGY VAC.

T2MM-D1

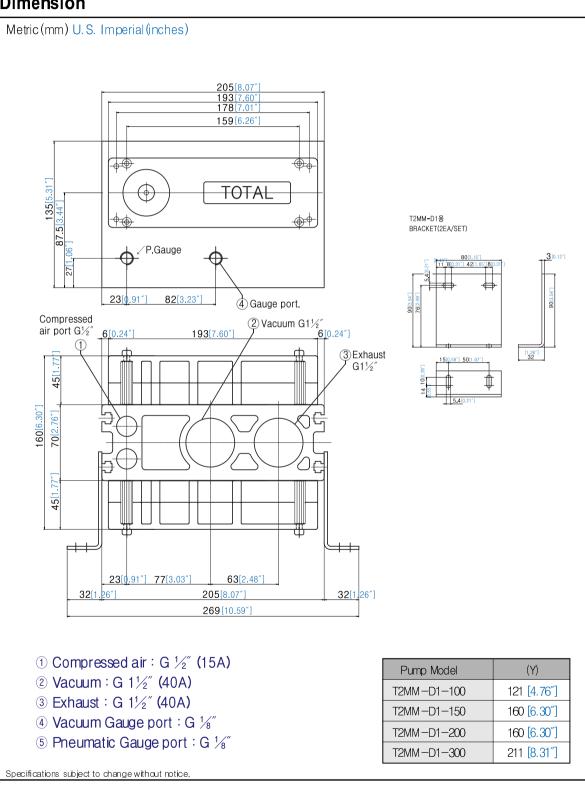

Time to evacuate a volume (sec/ l) (sec/cf) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

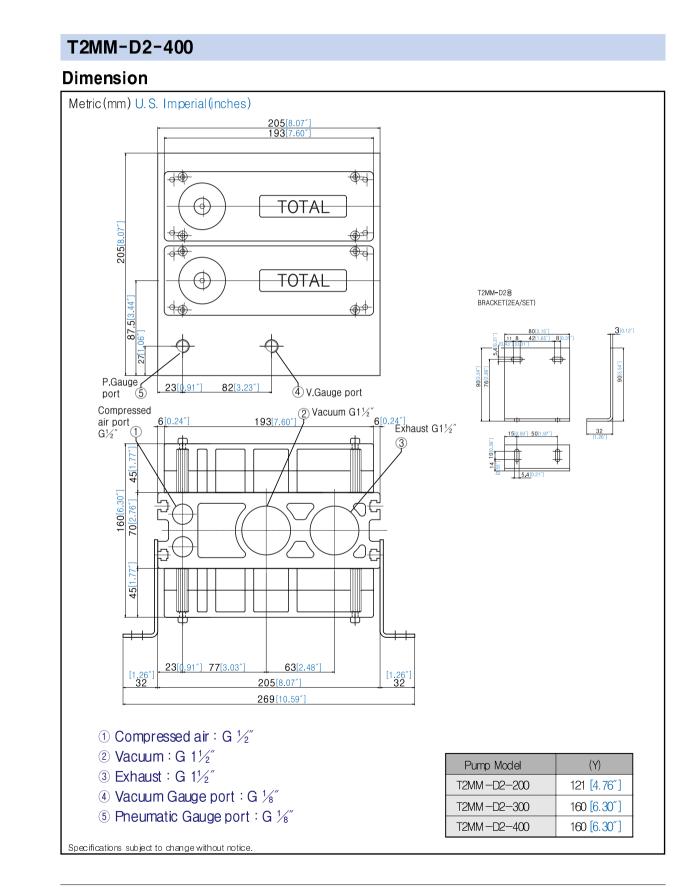
Vacuum Level		Evacuation Time (sec/ l) (sec/cf)											
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90			
T2MM-D1-100	0	0.008 0.226	0.018 0.512	0.032 0.896	0.060 1.692	0.090 2.538	0.160 4.448	0.190 5.244	0.490 13.818	0.990 28.067			
T2MM-D1-150	0	0.005 0.142	0.013 0.370	0.017 0.476	0.042 1.184	0.074 2.087	0.124 3.447	0.208 5.741	0.370 10.434	0.868 24.608			
T2MM-D1-200	0	0.004 0.113	0.011 0.313	0.021 0.588	0.032 0.902	0.060 1.692	0.094 2.613	0.159 4.388	0.281 7.924	0.679 19.250			
T2MM-D1-300	0	0.003 0.085	0.008 0.228	0.016 0.448	0.027 0.761	0.040 1.128	0.066 1.835	0.090 2.484	0.180 5.076	0.340 9.639			
T2MM-D1-400	0	0.002 0.057	0.006 0.171	0.009 0.252	0.018 0.508	0.031 0.874	0.048 1.334	0.080 2.208	0.090 2.538	0.280 7.938			

T2MM-D2

Time to evacuate a volume (sec/ l) (sec/cf) at different vacuum levels (mmHg · G) (-i nHg) (-kPa)

Vacuum Level		Evacuation Time (sec/ l) (sec/cf)											
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90			
T2MM-D2-100	0	0.007 0.198	0.018 0.512	0.030 0.840	0.060 1.692	0.090 2.538	0.165 4.587	0.190 5.244	0.490 13.818	0.990 28.067			
T2MM-D2-150	0	0.005 0.142	0.013 0.370	0.017 0.476	0.042 1.184	0.074 2.087	0.124 3.447	0.206 5.686	0.368 10.378	0.854 24.211			
T2MM-D2-200	0	0.002 0.057	0.006 0.171	0.012 0.336	0.031 0.874	0.058 1. <u>636</u>	0.094 2.613	0.153 4.223	0.280 7.896	0.780 22.113			
T2MM-D2-300	0	0.002 0.056	0.005 0.142	0.016 0.448	0.025 0.705	0.039 1.100	0.065 1.807	0.086 2.374	0.140 3.948	0.740 20.979			
T2MM-D2-400	0	0.001 0.028	0.003 0.085	0.008 0.224	0.017 0.479	0.029 0.818	0.046 1.279	0.070 1.932	0.119 3.356	0.684 19.391			
T2MM-D2-600	0	0.001 0.027	0.003 0.084	0.006 0.168	0.012 0.338	0.021 0.592	0.034 0.945	0.058 1.601	0.105 2.961	0.622 17.634			
T2MM-D2-800	0	0.001 0.028	0.002 0.057	0.005 0.140	0.009 0.254	0.015 0.423	0.024 0.667	0.038 1.049	0.070 1.974	0.488 13.835			

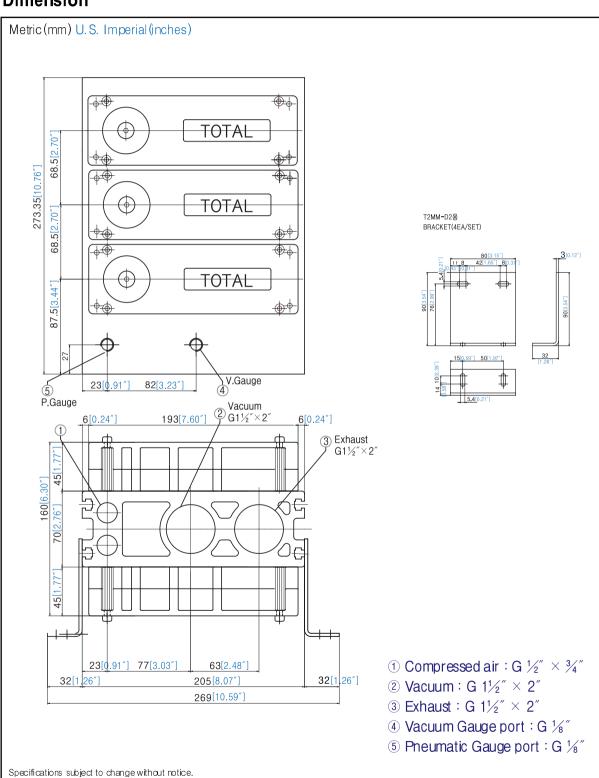


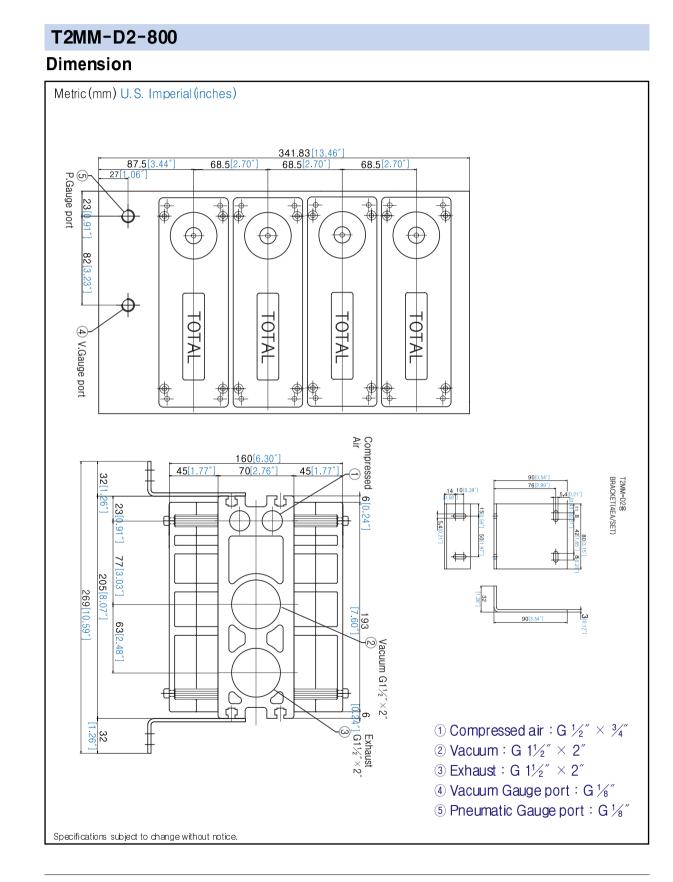


Vacuum Pumps

T2MM-D1-200

Dimension





Vacuum Pumps

T2MM-D2-600

Dimension

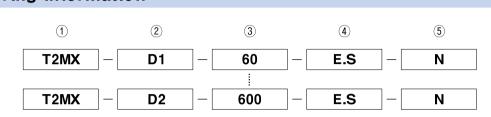
14) T2MX-D1/D2 (U): Extra Vacuum Unification Type

Air-driven vacuum pump with MX type of multi-stage nozzle, put together on the large of integrated aluminum connection plate to realize various vacuum flows from the medium size of pumps to the large size of vacuum pumps.

For using MX type's nozzle, this new product can reach up to -96 kPa of vacuum level and can replace the oil lubricated rotary vane vacuum pump.

To increase vacuum flow, it has expanded vacuum port and exhaust port's size. To save air consumption, this product can be equipped with Energy Saving Kit.

With various vacuum & pressure switches, this enables you to design various vacuum automation system with PLC and RELAY.



Performance and Specification Outline

T2MX Series	T2MX-D1	T2MX-D2				
Max. Vacuum Level	Max. 720.18 (mmHgG) Max. –28.35 (inHg) Max. –96 (kPa)	Max. 720.18 (mmHgG) Max. –28.35 (inHg) Max. –96 (kPa)				
Max. Vacuum Flow	Max. 1,410 (N <i>l</i> /min) Max. 49.788 (sc.fm)	Max. 3,530 (N ℓ /min) Max. 124.647 (scfm)				
Supply Air Condition	Compressed Air	Compressed Air				
Supply Air Pressure	4.12~6.08 (bar) 4.2~6.2 (kg.f/cm²) 59.74~88.18 (psi)	4.12~6.08 (bar) 4.2~6.2 (kg.f/cm²) 59.74~88.18 (psi)				
Working Temperature	-20℃~+80℃ -4°F~+176°F	-20℃~+80℃ -4°F~+176°F				
Noise Level	68~74 dBA	68~74 dBA				

Ordering information

(1) Basic Model

T2MX: Extra vacuum (-96 kpa) - medium & large integrated

2 Pump Arrangement

-D1: 1 (one) column multi array (60, 120, 240) -D2: 2(two) column multi array (120, 240, 360, 480, 600)

3 **Pump's Size:** classified by max. vacuum flow

60	Max. 360 (N ℓ /min)	Max. 12.712 (sc.fm)
120	Max. 714 (N ℓ /min)	Max. 25.212 (scfm)
240	Max. 1,410 (N <i>l</i> /min)	Max. 49.788 (sc.fm)
360	Max. 2,120 (N <i>l</i> /min)	Max. 74.859 (sc.fm)
480	Max. 2,820 (N <i>l</i> /min)	Max. 99.576 (sc.fm)
600	Max. 3,530 (N <i>l</i> /min)	Max. 124.647 (scfm)

④ Energy Saving Kit

-None: Not equipped with Energy Saving Kit -E.S: To save air consumption, it is combined with vacuum valve, vacuum switch, and pneumatic valve (about 38 % of air consumption's saving effect)

(5) Material of Check V/V & Seal Kit's

-None: the same with "N"

Ν	Nitri le	Hexane, petrol, Me Hanel Resistible	For details.			
V	Viton	C4 H10, Xylene, C6 H6Resistible	pls. refer to Chemical Resistance Data (on page 204)			
Е	EPDM	03. Ammonia, Ethane Resistible				

ΤΟΤΑΙ FCHNOLOG

T2MX-D1: Extra Vacuum Unification Type

Characteristics / Medium Vacuum

	Max.	Max.	Air	Noise	Net	Pipe Arrangement (Ø)			
Pump Model	Vacuum (mmHg · G) (-inHg) (-k Pa)	Vacuum Flow (N ℓ /min) (scfm)	Consumption (N ℓ /min) (scfm)	Level (dBA)	Weight (g) (oz)	Compressed Air (inches)	Vacuum (inches)	Exhaust (inches)	
T2MX-D1-60	- 720	360 12.712	246 8.686	65	2,800 98.756	G 1/2″	G 1 1/2″	G 11/2″	
T2MX-D1-120	28.35	714 25.212	489 17.267	65	3,300 116.391	G 1/2″	G 11/2″	G 11/2″	
T2MX-D1-240	96	1,410 49.788	965 34.075	68	4,200 148.134	G 1/2″	G 11/2″	G 11/2″	

T2MX-D2: Extra Vacuum Unification Type

Characteristics / Extra Vacuum

	Max.	Max.	Air	Noise	Net	Pipe Arrangement (Ø)			
Pump Model	Vacuum (mmHg · G) (-inHg) (-k Pa)	Vacuum Flow (N ℓ /min) (scfm)	Consumption (N ℓ /min) (scfm)	Level (dBA)	Weight (g) (oz)	Compressed Air (inches)	Vacuum (inches)	Exhaust (inches)	
T2MX-D2-120		714 25.212	489 17.267	65	3,100 109.337	G 1/2″	G 1 1/2″	G 11/2″	
T2MX-D2-240	720	1,410 49.788	965 34.075	68	4,200 148.134	G 1/2″	G 11/2″	G 11/2″	
T2MX-D2-360	28.35	2,120 74.859	1,452 51.271	72	5,300 186.931	G 1/2″	G 11/2″	G 11/2″	
T2MX-D2-480	96	2,820 99.576	1,905 67.267	72	6,400 225.728	G 1/2″ x G3/4″	G 1/2" x G2"	G 1 1/2″ x G2″	
T2MX-D2-600		3,530 124.647	2,385 84.216	74	8,600 303.322	G 1/2″ x G3/4″	G 1/2″ x G2″	G 1 1/2″ x G2″	

Vacuum Level		Vacuum Flow (N ℓ /min) (scfm)												
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90	713 28.06 95	750 29.53 100		
T2MK-D2-120	714 25.212	507 17.903	410 14.477	347 12.253	224 7.910	184 6.497	124 4.379	34 1.201	14.2 0.501	11.6 0.410	7.2 0.254	-		
T2MK-D2-240	1,410 49.788	1,029 36.335	789 27.860	684 24.153	488 17.232	252 8.898	161 5.685	49 1.730	22.9 0.809	16.8 0.593	10.8 0.381	-		
T2MK-D2-360	2,120 74.859	1,778 62.782	1,210 42.7 <i>2</i> 6	742 26.201	614 21.681	448 15.819	276 9.746	72 2.542	36.4 1.285	27 0.953	18.4 0.650	-		
T2MK-D2-480	2,820 99.576	2,224 78.531	1,720 60.734	1,045 36.900	905 31.956	829 29.273	515 18.185	134 4.732	69 2.436	49.2 1.737	34.3 1.211	-		
T2MX-D2-600	3,530 124.647	2,824 99.718	2,040 72.034	1,227 43.326	1,130 39.901	1,094 38.630	732 25.847	199 7.027	99.8 3.524	72.5 2.560	48.8 1.723	_		

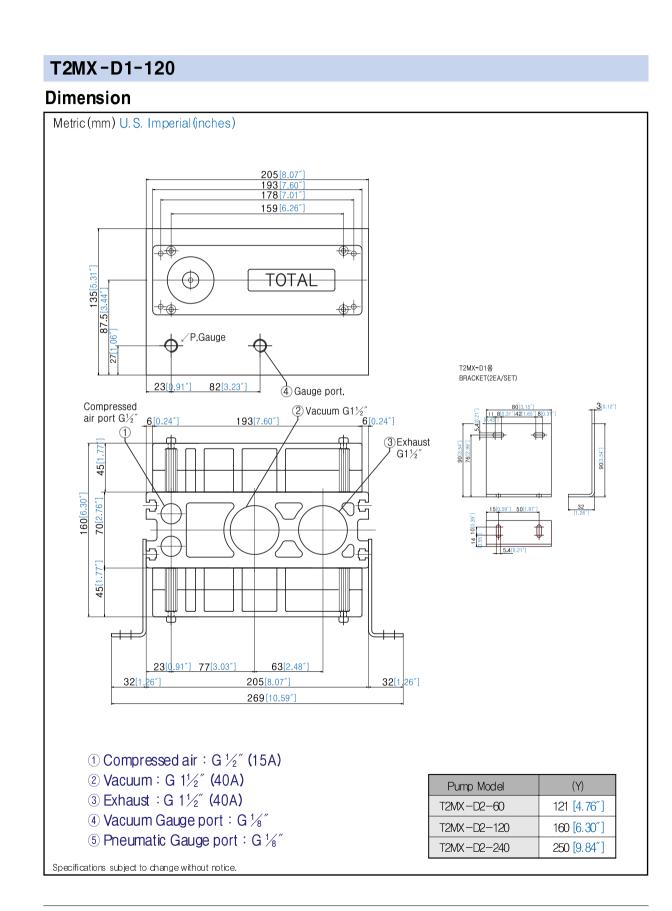
Vacuum flow in (N / /min) (scfm) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

Vacuum Level		Vacuum Flow (N / /min) (scfm)												
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90	713 28.06 95			
T2MX-D1-60	360	252	212	192	149	114	79	22	9.3	7.7	4.8			
	12.712	8.898	7.486	6.780	5.261	4.025	2.790	0.777	0.328	0.272	0.169			
T2MK-D1-120	714	507	410	347	224	184	124	34	14.2	11.6	7.2			
	25.212	17.903	14.477	12.253	7.910	6.497	4.379	1.201	0.501	0.410	0.254			
T2MK-D1-240	1,410	1,029	789	684	488	252	161	49	22.9	16.8	10.8			
	49.788	36.335	27.860	24.153	17.232	8.898	5.685	1.730	0.809	0.593	0.381			

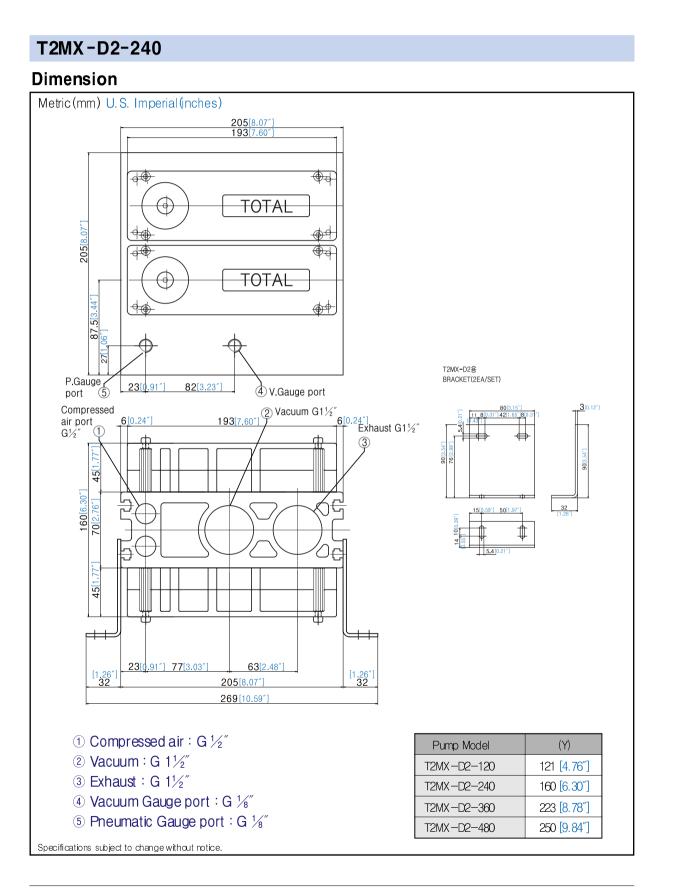
TOTAL VACUUM TECHNOLOGY VAC.

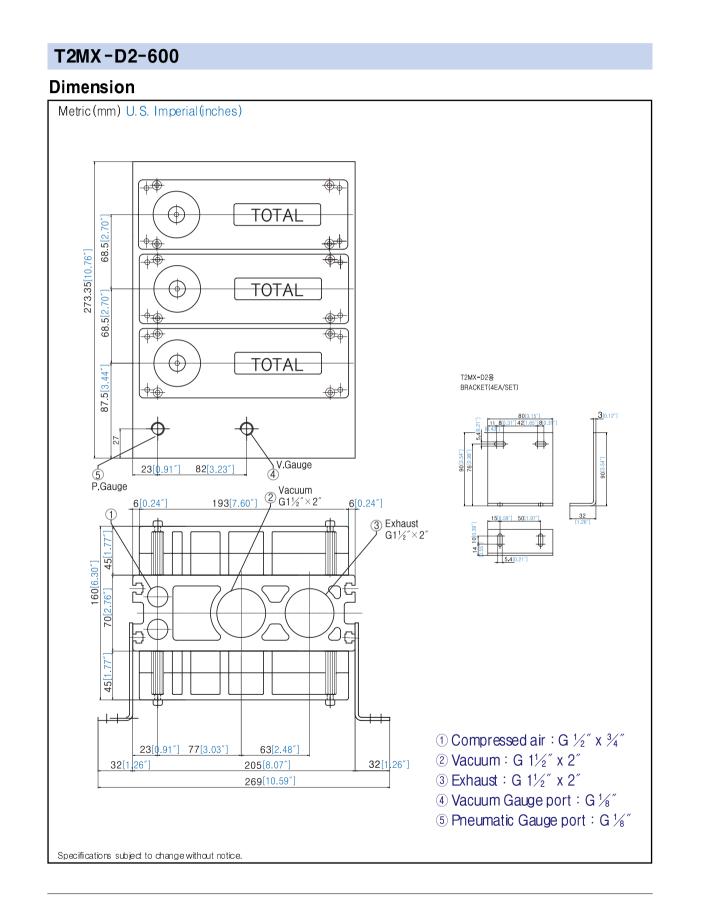
Vacuum flow in (N / /min) (scfm) at different vacuum levels (mmHg · G) (-inHg) (-kPa)

T2MX-D1


Time to evacuate a volume (sec/ l) (sec/cf) at different vacuum levels (mmHg · G) (-i nHg) (-kPa)

Vacuum Level		Evacuation Time (sec/ l) (sec/cf)												
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90	720 28.35 96			
T2MX-D1-60	0	0.027 0.764	0.040 1.138	0.081 2.268	0.192 5.414	0.143 4.033	0.225 6.255	0.308 8.501	0.422 11.900	0.770 21.830	0.930 26.040			
T2MK-D1-120	0	0.009 0.028	0.017 0.484	0.034 0.952	0.109 3.074	0.109 3.074	0.188 5.226	0.268 7.397	0.368 10.378	0.664 18.824	0.840 23.520			
T2MK-D1-240	0	0.006 0.170	0.012 0.341	0.012 0.336	0.039 1.100	0.039 1.100	0.117 3.253	0.172 4.747	0.215 6.063	0.398 11.283	0.580 16.240			


T2MX-D2


Time to evacuate a volume (sec/ l) (sec/cf) at different vacuum levels (mmHg · G) (-i nHg) (-kPa)

Vacuum Level		Evacuation Time (sec/ l) (sec/cf)												
Pump Model	0 0 0	75 2.95 10	150 5.91 20	225 8.86 30	300 11.81 40	375 14.76 50	450 17.72 60	525 20.67 70	600 23.62 80	675 26.57 90	720 28.35 96			
T2MX-D2-120	0	0.009 0.255	0.018 0.512	0.037 1.036	0.064 1.805	0.118 3.328	0.192 5.338	0.285 7.866	0.389 10.970	0.685 19.420	0.920 25.760			
T2MK-D2-240	0	0.007 0.198	0.013 0.370	0.026 0.728	0.048 1.354	0.081 2.284	0.124 3.447	0.190 5.244	0.261 7.360	0.452 12.814	0.642 17.976			
T2MX-D2-360	0	0.005 0.142	0.009 0.256	0.016 0.448	0.029 0.818	0.064 1.805	0.088 2.446	0.153 4.223	0.194 5.471	0.324 9.185	0.522 14.616			
T2MK-D2-480	0	0.003 0.085	0.007 0.199	0.010 0.280	0.018 0.508	0.055 1.551	0.079 2.196	0.132 3.643	0.168 4.738	0.268 7.598	0.417 11.676			
T2MK-D2-600	0	0.003 0.085	0.004 0.114	0.008 0.224	0.014 0.395	0.045 1.269	0.062 1.724	0.115 3.174	0.149 4.202	0.209 5.925	0.325 9.100			

TOTAL VACUUM VAC.

Chap. 4 Suction Cups

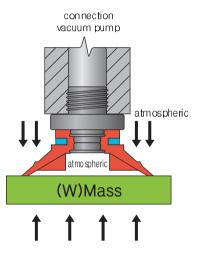
	114
s Suction Cup?	115
rinciple of Suction Cup	116
y Requirements	117
um Pad Size Selection	117
on Cup's Lifting Force Calculation	118
ral Suction Cup (F, U Type)'s Lifting Force	118
Model's Characteristics	120
ssories' Use & Application	124
on Cup's Material Resource and Features	125
to Select the Correct Suction Cup	129
	123

① Model TU Type ② Model TF Type ③ Model TOC Type (4) Model TB Type (5) Model TD Type (6) Model TBL Type ⑦ Model TFC Type ⑧ Model TP Type
⑨ Custom-Designed Pad ⑩ Level Spring & Ball Joint

1) What's Suction Cup?

- Suction cups are used to lift or move or change the direction of the various different objects to be handled such as packaging material or parts.
- After connecting suction cup through hose with vacuum generated by TOTAL vacuum ejector, can hold and move the objects to be handled.
- Using suction cup enables you to safely move almost all objects with inexpensive price, based on reliable technology

※ Advantages


- Easy installation
- Easy to maintain
- Does not damage the products
- Low price
- Fast to be equipped
- No 2nd contamination
- Usable in the radioactive area

※ Disadvantages

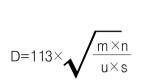
- Having an effect on the different shapes and surfaces of the objects to be handled
- Weak against intended leakage
- Considering positioning in relation to the object's direction and the moment of a force.


2) The Principle of Suction Cup

When internal pressure between the surface of the objects to be handled and suction cup is lower than outside's pressure (atmospheric), that is, vacuum, the atmospheric pressure enables suction cup to hold.

Initial stage

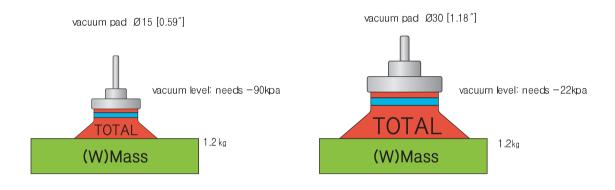
Vacuum pump operating stage


3) Energy Requirements

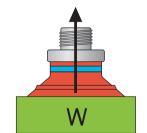
When using suction cup, it is not necessary to get high vacuum level. To get high vacuum, we will need energy as much as it and see suction cup's weariness.

The most efficient way of consumed energy is to use suction cup area's expanding with appropriate vacuum.

Broadening suction cup's areas makes the efficiency of energy to be 4 times higher than increasing vacuum.


4) Vacuum Pad Size Selection

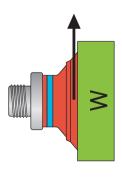
m: Mass (kg)


u: Vacuum Level (-kPa) n: Safety Factor (\rightleftharpoons 2) s: Number of Suction Cups

5) Suction Cup's Lifting Force Calculation

	W: Lifting Fo
	P: Vacuum L
$W = \frac{P}{760} \times s \times t \times (1.033)$	s: The Size c
/60	t: Perpendic

Like this, raising the diameter of suction cup can do the same work by consuming energy a little.



perpendicular

D: Diameter of Vacuum Pad

Force (Kg.f) Level (mmHg) of Vacuum Pad (cm²) / Vacuum Pad Area cular Safety Factor (1/2) Parallel / Horizontal Safety Factor (1/4)

Horizontal

Suction Cups

Diameterof	Lifting	Force(kg)-6	60kpa Vert ica	al force	Lifting Force(kg)-60kpa Horizontal force					
Vacuum Pad	With Safety	Factor (Kg)	Without Safe	ty Factor (Kg)	With Safety	Factor (Kg)	Without Safety Factor (Kg)			
(mm)	min.	max.	min.	max.	min.	max.	min.	max.		
Ø 2-8 [0.08″] [0.31″]	0~0.002	0~0.147	0~0.03	0~0.297	0~0.004	0~0.1	0~0.010	0~0297		
Ø 10-15 [0.39″] [0.59″]	0~0.19	0~0.45	0~0.36	0~0.88	0~0.16	0~025	0~0.46	0~0.73		
Ø 20-25 [0.79″] [0.98″]	0~0.33	0~127	0~0.65	0~2.7	0~029	0~0.85	0~0.83	0~2.7		
Ø 30-35 [1.18″][1.38″]	0~0.83	0~2.57	0~1.65	0~53	0~0.35	0~1.1	0~1.2	0~3.28		
Ø 40 [1.57 [~]]	0~1.14	0~3.1	0~226	0~5.83	0~0.76	0~1.68	0~226	0~52		
Ø 50-60 [1.97] [2.36]]	0~221	0~7.67	0~4.40	0~15.5	0~127	0~2.91	0~3.79	0~8.69		
Ø 75-80 [295]][3.15]]	0~8.18	0~10.4	0~16.34	0~20.6	0~3.76	0~7.0	0~11.24	0~20.6		
Ø 100-115 [394"][4.53"]	0~17.7	0~23.1	0~37	0~46.1	0~8.01	0~8.7	0~23.99	0~25.53		
Ø 150 [5917]	0~352	0~43.5	0~72	0~86.9	_	0~20.6	_	0~6124		
Ø 200-300 [7.87] [11.81]	0~97.1	0~219.5	0~194.0	0~438.9	—	_	_			

6) General Suction Cup (F, U Type)'s Lifting Force

7) Basic Model's Characteristics

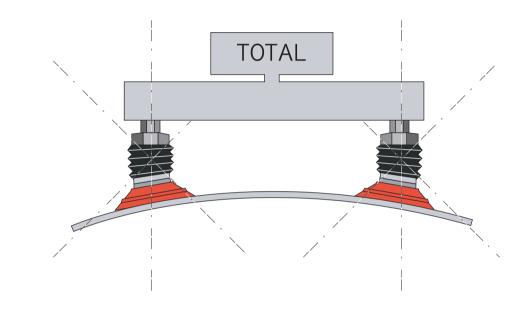
TOTAL suction cups have been being developed as more durable by revising existing domestic pad's defects and excellent temperature and chemical resistance. We will keep on developing various types of products from the small size(\emptyset) to the large size(300 \emptyset) along with the figures and characteristics of the objects to be handled, and will bear a part of your company's vacuum automation facility.

Things to consider when you select the correct suction cup

- Figure out the shapes, size, and weight of the objects to be handled, and decide which suction cup should be selected.
- Calculate the centre of gravity and the distance of number of suction cups of the objects to be handled
- Calculate the lifting force by the number of suction cups and safety factor
- Consider the material of suction cup and the chemical characteristics of the objects to be handled.
- After checking over mechanical dimensions, select accessories such as fitting, level compensator, ball joint, etc. to be attached on vacuum pad.
- Test after installation.

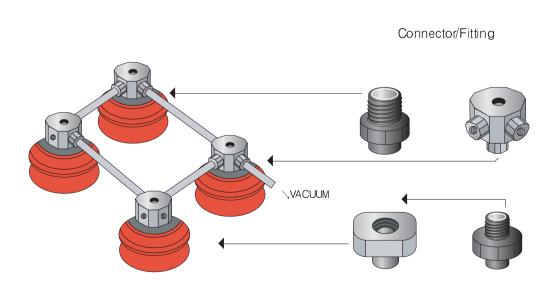
Various Suction Cups's Features and Application

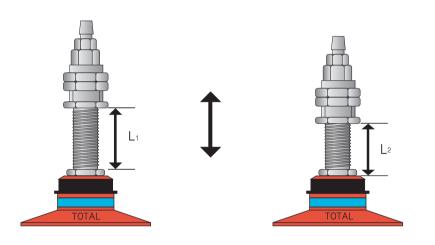
Model	Features	Application
"TU"Model	No cleats in the base side. Suitable for handling objects with flat or slightly curved surfaces. Universal type.	Micro semiconductor chip, Box packaging Metal sheets lifting Folding M/C, etc,
"TF"Model	With Cleats in the base side. Also suitable when lifting vertically as the cleats increase friction Strong horizontal and perpendicular lifting is the advantages of TF vacuum pad.	Flat metal sheets Wooden board Refrigerator Home appliances Perpendicular, horizontal moving No slippery on the flat
"TOC" Model (Oval Type)	As oval type. Designed for the objects with longish and slightly curved surfaces	Curved glass sheet Auto's plate Doors Refrigerator TV monitor Auto's bumper
"TB"Model (Bellows Type)	With 1~2ea of bellows, can handle the objects with height differences. Enables you to handle various types of objects to be handled with irregular surfaces by using this TB vacuum pad. Also suitable for handling thin products.	Glass sheet, Embossing sheet Plastics, Milk package Paper board, Pager box lifting Electronic parts s picking and moving Thin film's moving
"TD"Model (Dæp Type)	Suitable for handling the objects to be handled with longish and peaky like the top of egg, having large internal volume	Metallic sphere Eggs Curved metal sheets Box packaging
"TBL"Model (Long Bellows Type)	With 4 ea of bellows can handle the large objects with height differences like TB vacuum pad's use. Suitable for handling fragile objects to be handled by having a certain degree of shock absorption. % Not suitable for use with deep vacuum levels	Smooth object (Bakery) Fragile eggs Cup of glass Plate of glass loe cream Foodstuffs, etc.
"TFC" Model (Flat Curve Type)	With slightly curved (R) in the base side and "F" type's cleats, can handle both of flat and curved objects at the same time. Designed well for perpendicular and horizontal lifting Often use for auto manufacturing process	Auto glasses, Auto's roof Auto's door, Metal sheets lifting Feeding metal sheets into press Curved metal sheets Mechanical industry field
"TS"Model (Sponge Type)	Suitable for handling the objects with rough surfaces like blocks of stone, aggregate, concrete, and stone. Soft sponge type of vacuum pad's holding on rough surfaces, not to make a leak	Blocks of stone Concrete Large objects with rough surfaces lifting
"TPS" Model (Pastic Bag opening, Thin Film Materials)	Fit for moving thin work piece like vinyl or for plastic bag's opening. With thin vacuum pad like the objects to be handled, giving good adhesion to thin plastic and film type material.	Foodstuffs packaging PDP LCD skin film lifting Paper holding Semiconductor mark-free lifting


8) Accessories Use & Application

- Level Compensator

When the objects to be handled are stacked in parallel to the earth, this absorbs the height differences to keep in the certain position. Also provides a certain degree of shock absorption.

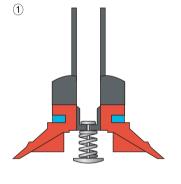

– Vacuum Ball-Joint

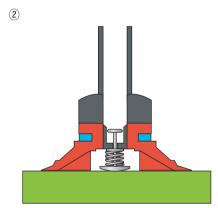

When the position of the objects to be handled is different from the level, even if the object has the angular difference, $\pm 12^{\circ}$ with vacuum pad, it is the TOTAL ball joint (TBJ-Series) that can lift and move the objects without any problems.

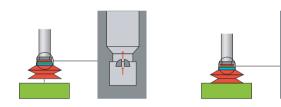
– Angle Adapter

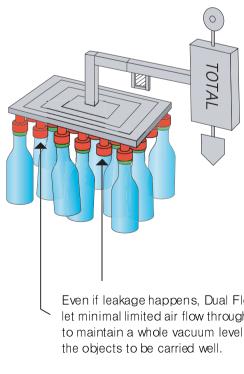
When connecting a series of suction cups in a system or when not enough space available in the top of suction cups, using angle adapter is a great help to vacuum arrangement.

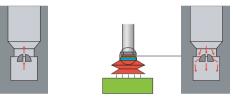
L1-L2=Absorbing Distance Even if the objects stack as high as this height, there is no effect on lifting work.


TOTAL VACUUM VAC. TECHNOLOGY


- Cone Valve


TOTAL's cone valve with fittings is functioning to stop automatically vacuum leakage which can be generated between suction cup and the objects to be handled. By using this Cone Valve, if both porous and no-porous materials of products are existed, can make lift and move easily.


- Dual Flow Control Valve

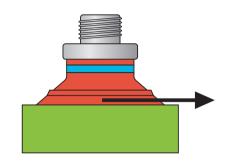

If the suction cup does not make contact with the object, the leakage can cause the objects to be dropped due to vacuum down in total system. Even if there is a little leakage, this Dual Flow Control Valve do sucking and lifting smoothly and normalize system by doing the rapid vacuum breaking when releasing.

Even if leakage happens, Dual Flow Control Valve let minimal limited air flow through the atmospheric to maintain a whole vacuum level, and can make

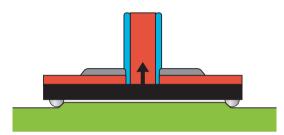
9) Suction Cup's Materials and Characteristics

Material	Temperature	Wear resistance	Oil Resistance	Weather & o zone resistance
NBR(Nitrile)	-30℃~+90℃ -22°F~+194°F	Excellent(* * *)	Excellent(* * *)	Very Good(* *)
Silicon	-70°C~+200°C -94°F~+392°F	Good(*)	Good(*)	Excellent(* * *)
Conductive silicon	-55℃~+230℃ -67°F~+446°F	Good(*)	Good(*)	Excellent(* * *)
TPU (Urethane)	-20℃~+80℃ -4°F~+176°F	Excellent(* * *)	Excellent(* * *)	Excellent(* * *)
EPDM(Ethylene propylene)	-40°C~+100°C -40°F~+212°F	Very Good(* *)	Good(*)	Excellent(* * *)

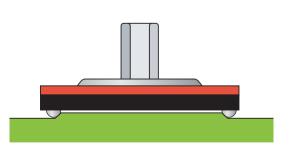
Cf. About other chemical characteristics or each materials data, pls. refer to the section of "Chemical Resistance Data" on page 19

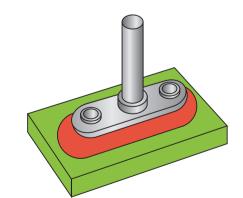

10) How to Select the Correct Suction Cup

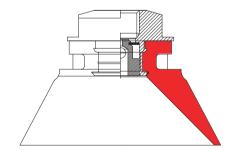
This final model selection table was finished by the classification work like below after general technical reviewing so far.


		Effectiveness of Models Surfaces and Status of the Objects to be handled													
Model	Flat	Covex	Concaved	Clean & Flat	Uneven	Adjust Level	Curved	Hard & Heavy	Mark- Free	Vertic al Movement	Safety	A Change of Direction	Thin Film		
TU	* * *	* * *	-	* **	—	—	—	* *	* * *	* *	*	*	* *		
TF	* * *	*	_	* **	_		_	* * *	* * *	* * *	* **	*	_		
TOC	* * *	**	* * *	* **	*	_	* *	* * *		* * *	* **	* * *			
TB	* * *	* * *	_	* **	* *	* * *	* * *	* *	* *	* *	* *	*	* *		
TD	* *	*	_	*	_	_	* *	*	_	_	*	*	_		
TBL	*	* * *	* *	*	*	* **	* * *	*			*	_	_		
TFC	* * *	* * *	* * *	* * *	*	_	* *	* * *			* **	_	_		
TS	* * *	_	*	* **	* * *	*	*	*		* * *	* **	_	_		
TPS	* * *	_	*	* **		_	*	*		* * *	* *	_	* * *		

***Excellent **Very good *good — not available

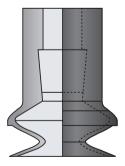

Force parallel to the surface, for example model TF


Thin objects, for example model TP with adjustable support

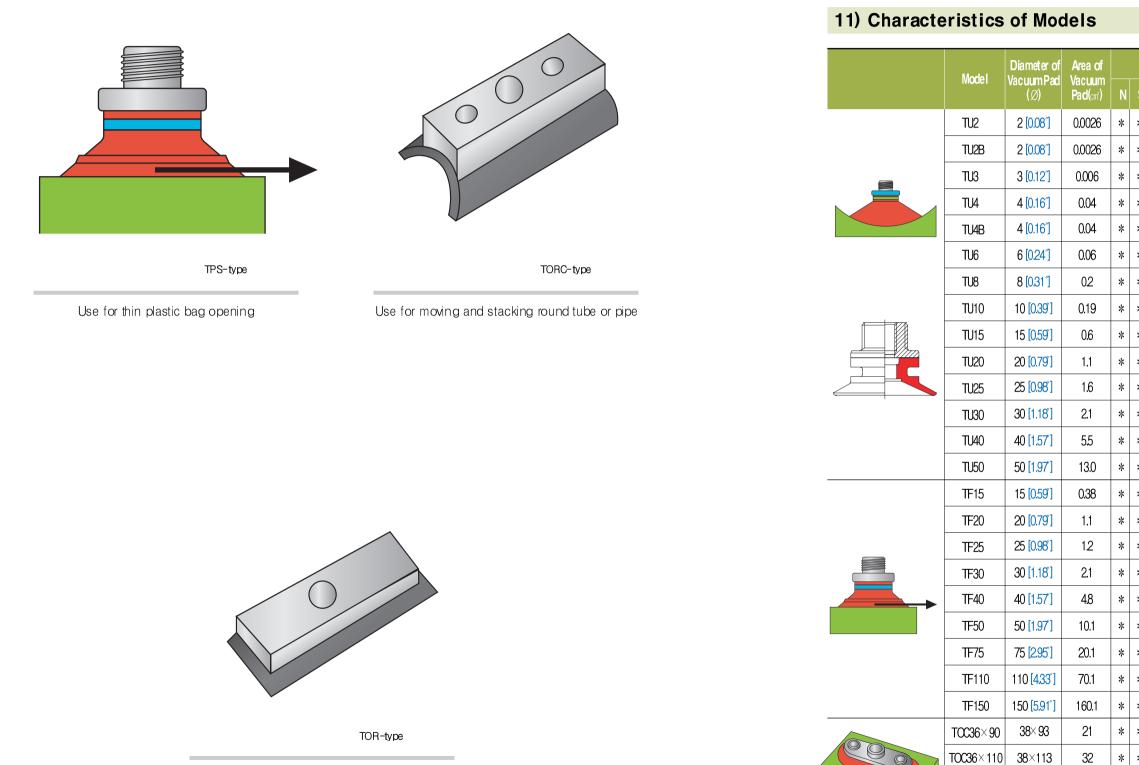

Slightly curved surface, for example model TB

Uneven surface, for example model TP

Oblong objects, for example model TOC



Around corners, for example model TD



Concave surface, for example model TU

Assembly without fitting, for example model Suction Cups

Use for lifting hundreds of kg to thousands of kg of large metal sheet, concrete, stone, etc.

Μ	ateri	ial		Perp	endicula	r(kg)	P	aral lel (k	9
S	CS	U	E	-20kPa	-60kPa	-90kPa	-20kPa	-60kPa	-90kPa
*	*			0.03	0.01	0.015	_	—	_
*	*			0.03	0.01	0.015	_	_	
*	*			0.009	0.042	0.066	_	_	
*	*			0.02	0.092	0.133	0.02	0.082	0.102
*	*			0.02	0.092	0.133	0.02	0.082	0.102
*	*			0.05	0.17	0.26	0.05	0.15	0.204
*	*			0.10	0.3	0.4	0.10	0.3	0.35
*	*	*		0.15	0.45	0.7	0.15	0.5	0.5
*	*	*		0.36	0.86	1.12	0.36	0.55	0.6
*	*	*		0.6	1.22	1.63	0.6	0.9	1
*	*	*		0.91	2	27	0.8	1	1.1
*	*	*		122	2.55	3.06	0.81	1	1.12
*	*	*		2.04	3.98	5	1.43	224	2.76
*	*	*		3.57	7.45	9.39	2.04	3.78	4.49
*	*	*		0.36	0.87	1.12	0.38	0.66	0.77
*	*	*		0.61	1.48	1.93	0.51	0.82	0.87
*	*	*		0.92	1.99	2.55	0.82	0.92	1.02
*	*	*		122	2.55	3.16	1.12	1.63	2.04
*	*	*		2.04	4.08	5.10	1.53	2.55	3.06
*	*	*		3.67	7.55	9.8	2.45	4.08	5.1
*	*	*		8.2	20.4	28	6.12	11.22	14.3
*	*	*		14.3	42.9	57.14	14.3	25.5	30.6
*	*	*		30.6	86.7	1122	25.5	612	82
*	*	*		5	11.93	17.44	5.41	11.43	15
*	*	*		6.3	17	22	8.8	21	26
*	*	*		13.47	38.06	53.06	18.98	38.06	52.04
*	*	*		19.3	54	76	27	54.4	74

TOC60×140

TOO60×780 62×183

62×143

53

61

*

*

	Mada	Diameter of	Area of		М	ateri	al		Perp	endicula	r(kg)	Р	aral lel (k	g)
	Model	VacuumPad (∅)	Vacuum Pad(cm)	N	S	cs	U	E	-20kPa	-60kPa	-90kPa	-20kPa	-60kPa	-90kPa
	TB5	5[0.20″]	0.06	*	*	*			0.03	0.08	0.10	_	—	—
	TB8	8[0.31″]	0.16	*	*	*			0.08	0.16	0.26	_	_	_
	TB 10	10[0.39″]	0.49	*	*	*	*		0.15	0.35	0.5	_	_	_
	TB 15	15[0.59″]	12	*	*	*	*		0.3	0.6	0.91	_	_	_
	TB 20	20[0.79″]	2.8	*	*	*	*		0.6	1	1.43	_		_
	TB 30	30[1.18″]	10.1	*	*	*	*		1.22	2.24	2.76	_	_	_
	TB 40	40[1.57″]	16.0	*	*	*	*		224	3.98	5	_	_	_
	TB 50	50[1.97″]	33.0	*	*	*	*		3.37	6.63	8.37	_	_	_
	TB 75	75[2.95″]	111.0	*	*	*	*		7.55	17.1	23.1	_	_	_
	TB 110	110[4.33″]	311.0	*	*	*	*		14	35	47.1	_	_	_
	TB 150	150[5.91″]	651.0	*	*	*	*		30	70	90.1	_	_	_
-	TD 15	15[0.59″]	1.0	*	*	*	*		0.3	0.8	1.12	_		_
	TD 20	20[0.79″]	2.6	*	*	*	*		0.6	1.53	1.84	_	_	_
	TD 30	30[1.18″]	5.1	*	*	*	*		1.43	2.7	3.16	_	_	_
	TD 50	50[1.97″]	16	*	*	*	*		3.67	7.96	10	_	_	_
	TBL 20	20[0.79″]	42	*	*	*	*		0.03	0.06	_	_	_	_
	TBL 30	30[1.18″]	132	*	*	*	*		0.07	0.16		_	_	_
	TBL 40	40[1.57″]	27.1	*	*	*	*		0.11	0.22	_	_	_	_
	TFC 35	35[1.38″]	5.1	*	*	*	*		1.16	3.67	5.2	2.76	5.2	6.33
	TFC 50	50[1.97″]	11.0	*	*	*	*		2.86	7.86	10.51	5	8.37	10.2
	TFC 75	75[2.95″]	31.0	*	*	*	*		7.45	16.02	21.94	10.92	20.41	23.47
	TFC 100	100[3.94″]	81.0	*	*	*	*		13.98	28.98	38.47	17.96	32.45	42.86
	TP 35	35[1.38″]	62					*	2.04	5.1	7.14	_		
	TP 65	65[2.56″]	21.0					*	6.12	15.31	22.45	_		_
	TP 110	110[4.33″]	56.0					*	18.37	45.92	67.35	_		
	TP 150	150[5.91″]	382.0					*	38.3	97.2	138.6	_	_	_
	TP 200	200[7.87″]	544.0					*	76.53	193.88	275.5	_	_	_
	TP 300	300[11.81″]	1286.0					*	163.3	438.8	653.1	_		

	Diameter of Area of			M	ateri	al		Perp	endicula	r(kg)	Pa	aral lel (k	9
Model	Vacuum Pad (∅)	Vacuum Pad(cm²)	N	S	CS	U	E	-20kPa	-60kPa	-90kPa	-20kPa	-60kPa	-90kPa
TPS15	15 [0.59″]	0.5	*	*				0.34	0.82	1.0	0.32	0.52	0.58
TPS20	20 [0.79″]	0.9	*	*				0.58	1.19	1.57	0.56	0.84	0.95
TPS25	25 [0.98″]	1.50	*	*				0.89	1.80	228	0.65	0.90	0.99
TPS30	30 [1.18″]	1.92	*	*				1.18	244	2.98	0.75	0.95	1.04
TPS 40	40 [1.57″]	5.45	*	*				2.0	3.88	4.87	1.35	2.12	2.64
TPS 50	50 [1.97″]	11.8	*	*				3.48	7.22	9.11	1.98	3.64	4.30
TORC-	custom-ma Series(Ø25) pund pipe or	0.98′], 50[, 150 <mark>[5.9</mark>	1″], 200	[7.87"])	
TOR-Series(40×80, 60×150, 80×200, 120×250, 200×480, 240×600) Use: Oblong sheet or large stone sheet, oval table, furniture, MDF, etc, heavy objects' lifting													

Suction Cups

• Features and Application

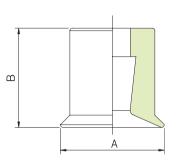
Smooth and no cleats in the base side.Suitable for handling the objects with flat or slightly curved surface.Use for holding thin products.

• Use of Application

thin steel sheet, veneer board, vinyl, paper, semiconductor chip, etc.

		Ordering	g Informatio	n	
① TU25	2 - N	3 - 18M	④ - CV	5 - TLC18M 30L	6 - TBJ 18
1 Pad Diameter (Ø)	② Material	3 Thre	ad Size	⑤ Level Compensator	6 Ball Joint
$TU2 : 2\emptyset [0.08']$ $TU3 : 3\emptyset [0.12']$ $TU4 : 4\emptyset [0.16']$ $TU6 : 6\emptyset [0.24']$ $TU8 : 8\emptyset [0.31']$ $TU10 : 10\emptyset [0.39'']$ $TU15 : 15\emptyset [0.59'']$ $TU20 : 20\emptyset [0.79'']$ $TU25 : 25\emptyset [0.98'']$ $TU30 : 30\emptyset [1.18'']$ $TU40 : 40\emptyset [1.57'']$	N : NBR S : Silicon U : Urethane C.S : C.Silicon E : EPDM	M5M : Male three 18M : Male three 18F : Female th 14M : Male three 38M : Male three	ad G1/8″ read G1/8″ ad G1/4″	TLC : TOTAL Level Compensator M5F7 I : M5F×7 Stroke M5F15 I : M5F×15 Stroke M5M10 I : M5M×10Stroke M5M20 I : M5M×20 Stroke 18F5 L : 18F×5 Stroke 18M10 I : 18M×10 Stroke 18M20 I : 18M×20 Stroke 18M30 L : 18M×30 Stroke 18M50 I : 18M×50 Stroke	TBJ 18 : Ball Joint 1/8"
TU 50 : 50Ø[1.97″]		④ Chec	k Valve	(Possible Option Stroke)	
		- CV : With cher - None : No che			

Model TU Type


• Lifting force at vacuum level

Model	Pe	rpendicul	ar		Parallel		Volume (cm)	Min. Radial	Demovile
IVIOCET	-20kpa	-60kpa	-90kpa	-20kpa	-60 kpa	-90kpa	volume (cm)	Motion (mm) (inches)	Remarks
TU2	0.003	0.01	0.015	_	—	_	0.0025	4.0 [0.16″]	
TU3	0.89	0.043	0.06	-	_	-	0.005	5.0 [0.20″]	
TU4	0.02	0.091	0.13	0.02	0.08	0.1	0.03	3.0 [0.12″]	
TU6	0.5	0.18	0.25	0.05	0.14	0.2	0.05	5.0 [0.20″]	
TU8	0.1	0.29	0.39	0.11	0.28	0.35	0.1	6.0 [0.24″]	
TU10	0.15	0.45	0.68	0.15	0.43	0.48	0.18	8.0 [0.31″]	
TU15	0.35	0.83	1.1	0.35	0.55	0.60	0.5	8.0 [0.31″]	
TU 20	0.59	1.21	1.6	0.59	0.88	0.99	1.0	13 [0.51″]	
TU25	1.0	1.94	2.4	0.71	0.94	1.02	1.87	18 [0.71″]	
TU 30	1.2	2.52	3.1	0.78	0.98	1.09	2.1	20 [0.79″]	
TU 40	2.0	3.92	4.8	1.41	2.22	2.73	5.4	30 [1.18″]	
TU 50	3.5	7.2	9.1	2.04	3.80	4.50	12	35 [1.38″]	

Dimensional information

Very Small($\emptyset 2[0.08"] \sim \emptyset 15[0.59"]$)

Model	ØA	В
TU2	2.6 [0.10″]	3.5 [0.14″]
TU3	3.8 [0.15″]	4.5 [0.18″]
TU4	5 [0.20″]	6.1 [0.24″]
TU6	7 [0.28″]	6.5 [0.26″]
TU8	9 [0.35″]	7 [0.28″]
TU10	11 [0.43″]	10.5 [0.41″]
TU15	16.5 [0.65″]	11.5 [0.45″]

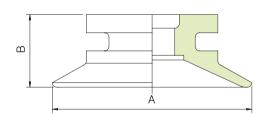
Model TU Type

• Dimensional information included Fitting

Very Small Male Thread

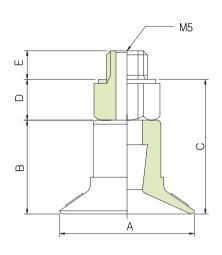
Model	ØA	В	С	D	E
TU2-M5	2.6	3.5	6	2.5	2
	[0.10 [″]]	[0.14″]	[0.24″]	[0.10″]	[0.08″]
TU3-M5	3.8	4.5	7	2.5	2
	[0.15″]	[0.18″]	[0.28″]	[0.10″]	[0.08″]
TU4-M5	5	6.1	10.1	4	3.5
	[0.20″]	[0.24″]	[0.40″]	[0.16″]	[0.14″]
TU6-M5	7	6.5	10.5	4	3.5
	[0.28″]	[0.26″]	[0.41″]	[0.16″]	[0.14″]
TU8-M5	9	7	11	4	3.5
	[0.35″]	[0.28″]	[0.43″]	[0.16″]	[0.14″]
TU10-M5	11	10.5	15.5	5	3.5
	[0.43″]	[0.41″]	[0.61″]	[0.20″]	[0.14″]
TU15-M5	16.5	11.5	16.5	5	3.5
	[0.65″]	[0.45″]	[0.65″]	[0.20″]	[0.14″]

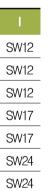
Small Male Thread

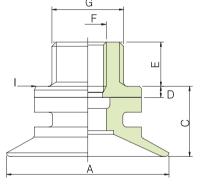

Model	ØA	С	D	E	F	G
TU20−18M	22 [0.87″]	9.5 [0.37″]	1.5 [0.06″]	6 [0.24″]	M5	G1/8″
TU25-18M	27 [1.06″]	10.5 [0.41″]	1.5 [0.06″]	6 [0.24″]	M5	G1/8″
TU30-18M	32 [1.26″]	11 [0.43″]	1.5 [0.06″]	6 [0.24″]	M5	G1/8″
TU40-18M	42 [1.65″]	18 [0.71″]	5 [0.20″]	7 [0.28″]	_	G1/8″
TU40-14M	42 [1.65 [″]]	19 [0.75″]	6 [0.24″]	9 [0.35″]	_	G1/4″
TU50-14M	53 [2.09″]	23.5 [0.93″]	6 [0.24″]	9 [0.35″]	_	G1/4″
TU50-38M	53 [2.09″]	23.5 [0.93 [″]]	6 [0.24″]	10 [0.39″]	_	G3/8″

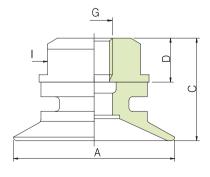
Small Female Thread

Model	ØA	С	D	G	I
TU20-M5	22 [0.87″]	16 [0.63″]	8 [0.33″]	G1/8″	SW12
TU25-M5	27 [1.06″]	17 [0.67″]	8 [0.33″]	G1/8″	SW12
TU 30 M5	32 [1.26″]	17.5 [0.69″]	8 [0.33″]	G1/8″	SW12
TU40-18F	42 [1.65 [″]]	21 [0.83″]	8 [0.33″]	G1/8″	SW17
TU50-18F	53 [2.09″]	26.5 [1.04″]	9 [0.35″]	G1/8″	SW24


Small(Ø20[0.79"]~Ø50[1.97"])

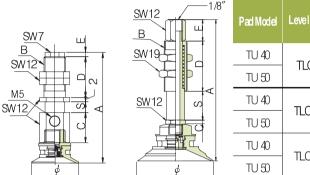

Model	ØA	В
TU20	22 [0.87″]	8 [0.31″]
TU25	27 [1.06″]	9 [0.35″]
TU 30	32 [1.26″]	9.5 [0.37″]
TU 40	42 [1.65″]	13 [0.51″]
TU 50	53 [2.09"]	17.5 [0.69″]

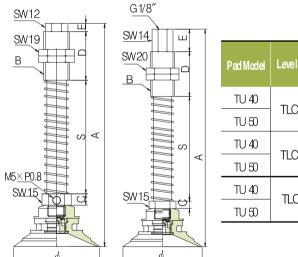




Suction Cups

Dimensional information included Level Compensator



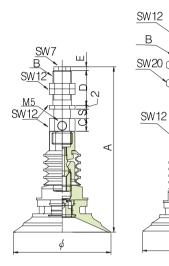

Pad Model	Level Compensator	Dimension Ø			С	D	E	S
TU 2		2.7 [0.11″]	48 [1.89″]					
TU 3	TLCM5F-7I	3.2 [0.13]	48 [1.89 [″]]	M8× P1.25	7	19 [0,75″]	10 [0.39″]	7 [028″]
TU 4		4.8 [1.19]	48 [1.89″]					
TU 2		2.7 [0.11″]	80 [3.15 [″]]					
TU 3	TLCM5F-15I	3.2 [0.13]	80 [3.15 [″]]	$M8 \times P1.0$	27	24 094	10 [0.39″]	15 [0 <i>5</i> 9″]
TU 4		48 [0.19]	80 [3.15 [″]]					
TU 6		8 [0.31″]	54 [2.13]	M8× P1.25	7 [0 28″]	19] [0.75″	10	7 [028″]
TU 8	TLC M5F-7I	10 [0.391]	55 [2.17]					
TU 10		12 [0.47 [*]]	59 [2.24″]				[0.39″]	
TU 15		17 [0.67]	60 [2.36 [″]]					
TU 6		8 [0.31″]	86 [3.39″]					
TU 8		10 [0.39]	87 [3.43 [″]]		27 [1.06″]	24	10] [0.39″]	15 [0.59″]
TU 10	TLCM5F-15I	12 [0.47]	91 [3.58″]	M8×P1.0] [094″]		
TU 15		17 [0.67]	92 [3.62 [°]]					

В Dimension A Pad Model Level Compensato 22 [0.87] 63 TU 20 M12× P1.0 3 19 7 [0.75″] [0.75″] [0.28″] 10 [039″] 27 [1.06] 64 [2.52 TLCM5M-10I TU 25 SW7 32 [1.26]] 64.5 [2.54 TU 30 В 22 [0.87[°]] 73 [2.87 SW/12 TU 20 27 [1.06[°]] 74 [2.91 M12× P1.0 3 19 7 [0.12"] [0.75"] [0.28"] 20 [0.79″] TU 25 TLCM5M-20I M5 32 [1.26] 74.5 SW12/ TU 30 22 [0.87] 52 [2.05 TU 20 M10× P1.0 15 19.5 3 27 [1.06[°]] 53 [2.09" 53.5 5 [020″] TU 25 TLC18F-5L 32 [1.26] TU 30

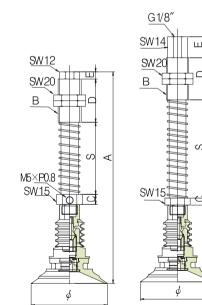
Model TU Type

SW8

SW12


SW10

el Compensator	Dimension Ø	Α	В	С	D	E	S
_C18F-5L	42 [1.65"] 53 [2.09"]	56 [2.20"] 62 [2.44"]	M10× P1.0	15 [0.59″]	19 [0.75″]	3 [0.12″]	5 [020″]
C18M-10I	42 [1.65″] 53 [2.09″]	72 [<u>2.83</u> "] 77 .5 [3.05"]		4 [0.16″]			10 [0.39″]
C18M-20I	42 [1.65″] 53 [2.09″]	95 [3.74″] 100 [3.94″]	M16× P1.0	4 [0.16″]	35 [1 38″]	16 [0.63″]	20 [0.79″]


el Compensator	Dimension Ø	Α	В	С	D	E	S
C18M-30L	42 [1.65"] 53 [2.09"]	117 [<u>4.61</u> "] 122 [4.80"]	M14× P1.5	11 [0.43″]	31 [1 22"]	6 [0.24″]	30 [1.18″]
C18M-50L	42 [1.65″] 53 [2.09″]	137 [<u>5.39</u> "] 142 [5.59"]	M14× P1.5	11 [0.43″]	31 [1 22″]	6 [0.24″]	50 [1.97″]
C18M-50I	42 [1.65″] 53 [2.09″]	142 [5.59″] 147 [5.79″]	M1.6× P1.0	6 [024″]	31 [1 22"]	16 [0.63″]	50 [1.97″]

Suction Cups

Dimensional information included Level Compensator & Ball Joint

— 1/ Щ	8″	Pad Model	Level Compensator	Dimension Ø	Α	В	С	D	E	S
		TU40	TLC18M-5L	42 [1.65″]	83 [327″]	M10× P1.0	15	19	3 [0.12″]	5 [0.20]
		TU50	TBJ18	53 [2.09″]	90 [3.54″]	MIU× PI.U	[0.59″]	[0.75″]	[0.12″]	[0 20"]
S		TU40	TLC18M-10I	42 [1.65″]	99 [3.90″]		4	35	16 [0.63"]	10 [0.39″]
		TU50	TBJ18	53 [2.09″]	104 [4.09″]	M14× P1.5	[0.167]	[138″]	[0.63″]	[0.39″]
T		TU40	TLC18M-20I	42 [1.65″]	122 [4.80″]		4	35	16 [0.63″]	20 [0.79″]
		TU50	TBJ18	53 [2.09″]	127 [5.00″]	M1.6× P1.0	[0.167]	[138]]	[0.63″]	[0.79″]

PadModel	Level Compensator	Dimension Ø	A	В	С	D	E	S
TU40	TLC18M-30 L	42 [1.65]	144 [5.67"]	M1.4× P1.5	11	31	6 [024″]	30 [1.18″]
TU50	TBJ18	53 [2.09″]	149 [5.87"]	MI 4^ PI.5	[0.43″]	[122"]	[0.24"]	[1.18″]
TU40	TLC18M-50 L	42 [1.65]	164 [6.46]]		11	31	6 [024]	50 [1,97″]
TU50	TBJ18	53 [2.09″]	169 [6.65]]	M14× P1.5	[0.43″]	[122"]	[0.24"]	[1.97″]
TU40	TLC18M-50I	42 [1.65]	169 [6.65]]		6	31	16 [0.63″]	50
TU50	TBJ18	53 [2.09″]	174 [6.85″]	M1.6× P1.0	[024]	[122″]	[0.63″]	50 [1.97″]

2 Model TF Type

• Features and Application

With cleats in the base side to increase suction and escape the slippery on the surface of suction cup.

Use for lifting without any separation.

• Use of Application

- flat metal sheet, veneer board, refrigerator, home appliances, etc.

		Ordering	g Information	ר ז	
① TF15	② - N	3 - 18M	④ - CV	⑤ - TLC18M30L	6 - TBJ 18
(1) Pad Diameter Ø	② Material	3 Thre	ad Size	5 Level Compensator	6 Ball Joint
TF15 : 15Ø [0.59"] TF20 : 20Ø [0.79"] TF25 : 25Ø [0.98"] TF30 : 30Ø [1.18"] TF40 : 40Ø [1.57"] TF50 : 50Ø [1.97"] TF75 : 110Ø [4.33"] TF150 : 150Ø [5.91"]	N : NBR S : Silicon U : Urethane CS : C.Silicon E : EPDM	M5M : Male thre M5F : Female the 18M : Male thre 18F : Female the 14M : Male thre 38M : Male thre 38F : Female the 12F : Female the	nread M5 ad G1/8″ read G1/8″ ad G1/4″ ad G3/8″ read G3/8″	TLC : TOTAL Level Compensator M5F7 I : M5F×7 Stroke M5F15 I : M5F×15 Stroke M5M10 I : M5M×10Stroke M5M20 I : M5M×20 Stroke 18F5 L : 18F×5 Stroke 18M5 L : 18M×50 Stroke 18M20 I : 18M×20 Stroke 18M30 L : 18M×30 Stroke 18M50 L : 18M×50 Stroke 18M50 I : 18M×50 Stroke 12M30 L : 12M×30 Stroke 12M30 L : 12M×30 Stroke 12M30 I : 12M×30 Stroke 12M30 I : 12M×30 Stroke	TBJ18 : Ball Joint 1/8″ TBJ12 : Ball Joint 1/2″
		– CV : With che – None : No che			

• Lifting Force (Kg) at vacuum level

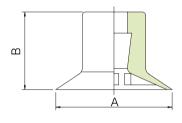
Model	Perpendicular			Parallel			Volume	Min. Radial	Remarks
WOLET	-20kpa	-60 kpa	-90kpa	-20kpa	-60 kpa	-90kpa	CM³	Motion (mm) (inches)	nemarks
TF15	0.36	0.87	1.12	0.38	0.66	0.77	0.37	13 [0.51″]	
TF20	0.61	1.48	1.93	0.51	0.82	0.87	1.0	18 [0.71″]	
TF25	0.92	1.99	2.55	0.82	0.92	1.02	1.1	22 [0.87″]	
TF30	1.22	2.55	3.16	1.12	1.63	2.04	2	25 [0.98″]	
TF 40	2.04	4.08	5.10	1.53	2.55	3.06	4.8	52 [2.05″]	
TF50	3.67	7.55	9.8	2.45	4.08	5.1	10	55 [2.17″]	
TF 75	8.2	20.4	28	6.12	11.22	14.3	20	150 [5.91″]	
TF110	14.3	42.9	57.14	14.3	25.5	30.6	70	250 [9.84″]	
TF150	30.6	86.7	112.2	25.5	61.2	82	160	500 [19.69″]	

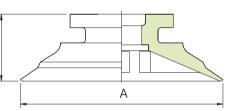
Model TF Type

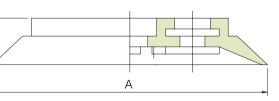
• Dimensional information

Small (Ø15[0.59"] ~ Ø50[1.97"])								
Model	ØA	В						
TF15	16.5 [0.65″]	11 [0.43″]						
TF20	22 [0.87″]	8 [0.31″]						
TF25	26.7 [1.05"]	9 [0.35″]						
TF30	32 [1.26″]	10 [0.39″]						
TF 40	42 [1.65″]	13 [0.51″]						
TF 50	53 [2.09″]	17.5 [0.69″]						

Large(Ø75[2.95"]~Ø150[5.91"])


Model	ØA	В
TF 75	77 [3.03″]	13 [0.51″]
TF110	112 [4.41″]	20 [0.79″]
TF150	152 [5.98″]	26 [1.02"]

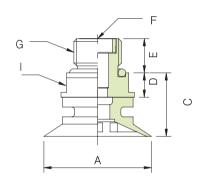

ш


ſſ

140 TOTAL VAC.

Suction Cups

Model TF Type


Dimensional information included Fitting

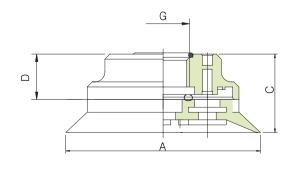
Small Male Thread

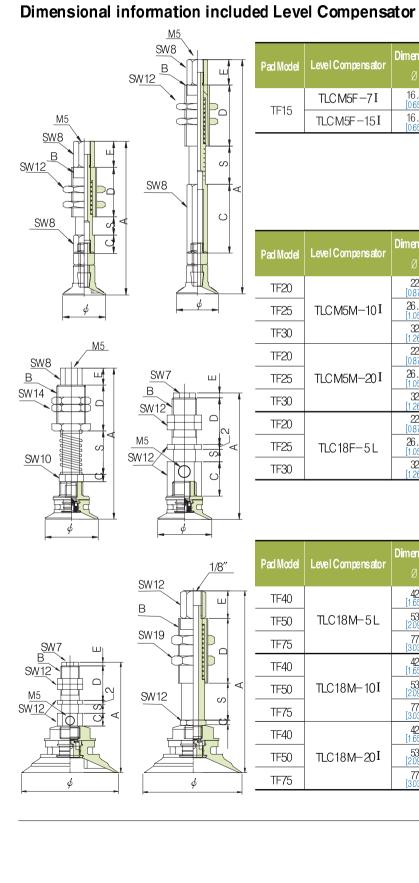
Model	ØA	В	С	D	Е
TF 15−M5	16.5	11	16	5	4
	[0.65″]	[0.43″]	[0.63″]	[020″]	[0.16″]

Model	ØA	С	D	Е	F	G	- I
TF20-18M	22 [087″]	9.5 [0.37″]	1.5 [0.06″]	6 [024″]	M5	G1/8″	SW12
TF25-18M	26.7 [1.05″]	10.5 [0.41″]	1.5 [0.06″]	6 [024″]	M5	G1/8″	SW12
TF30-18M	32 [126″]	11.5 [0.45″]	1.5 [0.06″]	6 [024″]	M5	G1/8″	SW12
TF40-18M	42 [1.65″]	18 [0.71″]	5 [020″]	7 [0.28″]	-	G1/8″	SW17
TF40-38M	42 [1.65″]	23.5 [0.93 [°]]	6 [0.24″]	10 [0.39″]	-	G3/8″	SW24
TF50-14M	53 [2.09″]	22.5 [0.89″]	6 [024″]	9 [0.35″]	-	G1/4″	SW24
TF50-38M	53 [209″]	23.5 [0.93]	6 [024″]	10 [0.39″]		G3/8″	SW24

m

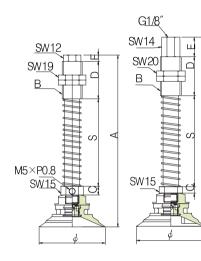
Small Female Thread


Model	ØA	С	D	G]
TF20-M5	22 [0.87″]	14 [0.55″]	6 [0.24″]	M5	SW12
TF25-M5	26.7 [1.05]]	15 [0.59″]	6 [0.24″]	M5	SW12
TF30-M5	32 [1 <i>2</i> 6″]	16 [0.63″]	6 [0.24″]	M5	SW12
TF 40-18F	42 [1.65″]	21 [0.83″]	8 [0.31″]	G1/8″	SW17
TF 50-18F	53 [2.09″]	26.5 [1.04]]	9 [0.35″]	G1/8″	SW22


Large Female Thread

Model	ØA	С	D	G
TF 75-18F	77 [3.03″]	26 [1.02″]	18 [0.71″]	G1/8″
TF 75-38F	77 [3.03″]	26 [1.02″]	18 [0.71″]	G3/8″
TF 75-12F	77 [3.03″]	26 [1.02″]	18 [0.71″]	G1/2″
TF110-12F	112 [4.41″]	29 [1.14″]	15 [0.59″]	G1/2″
TF150-12F	152 [5.98]	33 [1.30″]	14 [0.55″]	G1/2″

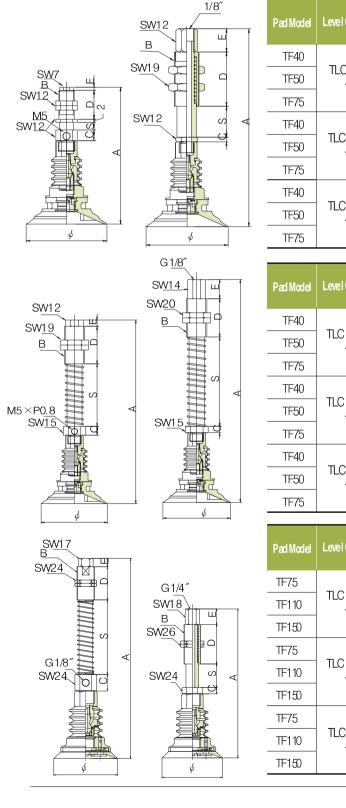
Model TF Type

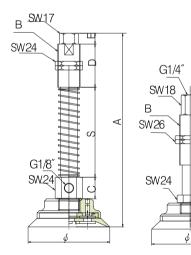

el Compensator	Dimension Ø	Α	В	С	D	E	S
_CM5F-7I	16.5 [065″]	60 [2.36″]	M8× P1.25	7 [0.28]	19 [0.75″]	10 [0.39″]	7 [0.28″]
CM5F-15I	16.5 [065″]	92 [3.62″]	M8× P1.0	27 [1.06″]	24 [094"]	10 [0.39″]	15 [0.06″]

el Compensator	Dimension Ø	Α	В	С	D	E	S
CM5M-10I	22 [0.87"] 26.7 [1.05"] 32 [1.26"]	63 [2.48"] 64 [2.52"] 65 [2.56"]	M12× P1.0	3 [0.12″]	19 [0.75″]	7 [028″]	10 [0.39″]
CM5M-20I	22 [087"] 26.7 [1.05"] 22 [1.26"]	73 [2.87"] 74 [2.91"] 75 [2.95"]	M12× P1.0	3 [0.12"]	19 [0.75″]	7 [028″]	20 [0.79″]
_C18F-5L	22 [087"] 26.7 [1.05"] 32 [1.26"]	52 [2.05″] 53 [2.09″] 54 [2.13″]	M10× P1.0	15 [0.59″]	19 [0.75″]	3 [0.12″]	5 [0 <i>2</i> 0″]

el Compensator	Dimension Ø	Α	В	С	D	E	S
C18M-5L	42 [1.65″] 53 [2.09″] 77 [3.03″]	56.5 [222] [2.44] [2.44] [2.40]	M10× P1.0	15 [0.59″]	19 [0.75″]	3 [0.28"]	5 [0.20″]
C18M−10I	42 [1.65"] 53 [2.09"] 77 [3.03"]	72 [2.83″] [3.03″] 78 [3.07″]	M14× P1.0	4 [0.16″]	35 [1 38″]	16 [0.63″]	10 [0.39″]
C18M-20I	42 [1.65″] [2.09″] 77 [3.03″]	95 [3.74″] 100 [3.94″] 101 [3.98″]	M16× P1.0	4 [0.16″]	35 [1 38″]	16 [0.63″]	20 [0.79″]

Model TF Type


Dimensional information included Level Compensator



Pad Model	Level Compensator	Dimension Ø	A	В	С	D	E	S
TF40		42 [1.59″]	117 [4.61″]					
TF50	TLC18M-30 L	53 [2.09″]	122 [4.90″]	M14× P1.5	11 [0.43″]	31 [1 22"]	6 [0.24″]	30 [1.18]
TF75		77 [3.03″]	123 [4.84″]					
TF40		42 [1.59″]	137 [5.39″]					
TF50	TLC18M-50 L	53 [2.09″]	142 [5.59″]	M1.4× P1.5	11 [0.43″]	31 [1 22"]	6 [0.24″]	50 [1.97″]
TF75		77 [3.03″]	143 [5.63]					
TF40		42 [1.59″]	142 [5.59″]					
TF50	TLC18M-50I	53 [2.09″]	147 [5.79″]	M16× P1.0	6 [024″]	31 [122]	16 [0.63]]	50 [1.97″]
TF75		77 [3.03″]	148 [5.83″]					

Model TF Type

Pad Model	Level Compensator	Dimension	A	В	С	D	Е	S
T CALIFICATOR								
TF75		42 [1.59″]	147 [5.79 [°]]					
TF1 10	TLC12M-30 L	53 [2.09″]	150 [5.91″]	M20× P1.5	20 [0.79″]	40 [1.57"]	10 [0.39″]	30 [1.18″]
TF150		77 [3.03″]	154 [6.06 [~]]					
TF75		77 [3.03″]	187 [7.36 [″]]					
TF1 10	TLC12M-50 L	112 [4.41″]	190 [7.48″]	M20× P1.5	20 [0.79″]	40 [1 <i>57″</i>]	10 [0.39″]	50 [1.97″]
TF150		152 [598″]	194 [7.64]					
TF75		77 [3.03″]	135 [5.31″]					
TF1 10	TLC12M-30I	112 [4.41″]	138 [5.43]	M22× P1.5	8 [0.31″]	50 [097"]	20 [0.79″]	30 [1.18″]
TF150		152 [598″]	142 [5.59 [°]]					

el Compensator	Dimension Ø	Α	В	С	D	E	S
.C18M—5L ТВЛ 8	42 [159″] 53 [209″] 77 [303″]	83 [327"] 89 [3.50"] 88 [3.46"]	M10× P1.0	15 [0.06″]	19 [0.75″]	3 [0.12″]	5 [0 <i>2</i> 0″]
C18M10I TBJ18	42 [1.59"] 53 [2.09"] 77 [3.03"]	99 [3.90"] 104 [4.09"] 104 [4.09"]	M14× P1.5	4 [0.16″]	35 [1 38″]	16 [0.63″]	10 [0.39″]
C18M-20I TBJ18	42 [1.59"] 53 [2.09"] 77 [3.03"]	122 [4.80″] 127 [5.00″] 127 [5.00″]	M16× P1.0	4 [0.16″]	35 [1 38″]	16 [0.63″]	20 [0.79″]

el Compensator	Dimension Ø	Α	В	С	D	E	S
C18M−30 L TBJ1 8	42 [1 59"] 53 [2.09"] 77 [3.03"]	144 [5.67"] 149 [5.87"] 149 [5.87"]	M14× P1.5	15 [0.06″]	31 [1 22″]	6 [024″]	30 [1.18″]
C18M−50 L TBJ1 8	42 [1 59″] 53 [2.09″] 77 [3.03″]	164 [6.46"] 169 [6.65"] 169 [6.65"]	M14× P1.5	11 [0.43″]	35 [1 38″]	6 [024″]	50 [1 97″]
C18M−50I TBJ18	42 [1.59"] 53 [2.09"] 77 [3.03"]	169 [6.65 [°]] 174 [6.85 [°]] 174 [6.85 [°]]	M16× P1.0	6 [024″]	35 [1 38″]	16 [0.63″]	50 [1 97″]

el Compensator	Dimension Ø	Α	В	С	D	E	S
C12M−30 L TBJ1 2	77 [3.03"] 112 [4.41"] 152 [5.98"]	191 [7.50 [°]] 194 [7.64 [°]] 198 [7.78 [°]]	M20× P1.5	20 [0.79″]	40 [1 57"]	10 [0.39"]	30 [1.18″]
C12M−50 L TBJ1 2	77 [3.03"] 112 [4.41"] 152 [598"]	231 [9.14"] 234 [9.26"] 238 [9.30"]	M20× P1.5	20 [0.79″]	40 [1 57"]	10 [0.39"]	50 [1 97″]
C12M30I TBJ12	77 [3.03"] 112 [4.41"] 152 [598"]	179 [7.05 [°]] 182 [7.17 [°]] 186 [7.30 [°]]	M22× P1.5	8 [0.31″]	50 [1 97″]	20 [0.79″]	30 [1.18″]

3 Model TOC Type

• Features and Application

As an oval type, use for the objects to be handled with longish and slightly curved surface. To be used when the direction requirement is necessary.

• Use of Application

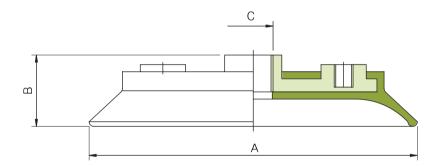
- curved glass, auto's plate, doors, refrigerator, TV monitors, auto's bumper, etc.

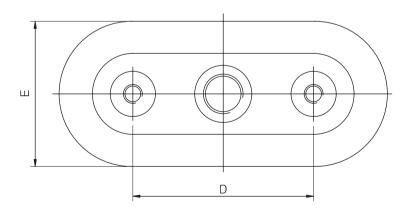
		Ordering	g Information	ı	
	② - N	3 - 18F	④ - CV	(5) -	6
(1) Pad Diameter Ø	2 Material	3 Thre	ad Size	5 Level Compensator	6 Ball Joint
TOC36 ×90 : 38 ×93 TOC36 ×1 10 : 38 ×113 TOC60 ×1 40 : 62 ×143 TOC60 ×1 80 : 62 ×183	N : NBR S : Silicon U : Urethane CS : C.Silicon	18F : Female th 38F : Female th		_	_
		④ Chec	k Valve		
		– CV : With cher – None : No che			

Model TOC Type

• Lifting Force (Kg) at vacuum level

Machi	Perpendicular			Parallel		Volume	Min. Radial	Demerilm	
Model	-20 kpa	-60 kpa	-90kpa	-20kpa	-60 kpa	-90kpa	CM³	Motion (mm) (inches)	Remarks
TOC 36 ×90	5	11.93	17.44	5.41	11.4	15	20		
TOC36×110	6.3	17	22	8.8	21	26	25		
TOC60×140	13.47	38.06	53.06	18.98	38.1	52.0	52	200 [7.87″]	
TOC60×180	19.3	54	76	27	54.4	74	67	250 [9.84″]	


TOTAL VACUUM VAC. TECHNOLOGY


Model TOC Type

• Dimensional information included Fitting

Medium Female Thread

Model	ØA	В	С	D	Е
TOC36×90	95	23	G1/8″	57	38
	[<u>3.74</u> ″]	[0.91″]	[1.59″]	[224″]	[1 <i>5</i> 0″]
TOC36×110	115	23	G3/8″	77	38
	[4.57″]	[0.91″]	[209″]	[3.03″]	[1 <i>5</i> 0″]
TOC60×140	140	32	G3/8″	77	62
	[5.51″]	[1.26″]	[303″]	[3.03″]	[2,44″]
TOC60×180	180	32	G3/8″	116	62
	[7.09″]	[1.26]	[303″]	[4.57″]	[244"]

Model TB Type

• Features and Application

For $1(\text{one}) \sim 2(\text{two})$ ea of bellows, this can handle the objects with height differences. TB vacuum pad series enable you to handle various types of objects to be handled with irregular surfaces.

Also suitable for handling thin products.

Use of Application

- glass sheet, plastics, milk package, curved glasses, corrugated cardboard, paper box, electronic parts, thin film lifting

	Ordering Information										
1	2	3	4	5	6						
T B- 50	– N	– 18M	-CV	- TLC18M201							
(1) Pad Diameter Ø	② Material	③ Thre	ad Size	(5) Level Compensator	6 Ball Joint						
TB5 : 5Ø[0.20″]	N:NBR	M5M : Male thre	ad M5	TLC : TOTAL Level							
TB8 : 8Ø[0.31″]	S : Silicon	18M: Male threa	ad G1/8″	Compensator							
TB10 : 10Ø [0.39″]		18F: Female th	readG1/8″	M5F7 I:M5×7 Stroke M5F15 I:M5×15 Stroke							
TB15 : 15Ø [0.59″]	U: Urethane	14M: Male threa	ad G1/4″	M5M10I: M5×10Stroke							
TB 20 : 20Ø [0.79″]	C.S : C.Silicon	38M: Male threa	ad G3/8″	M5M20I:M5×20 Stroke 18F5L:18F×5 Stroke							
TB 30 : 30Ø [1.18″]		38F:Femaleth	read G3/8″	18M10 I : 18M×10 Stroke							
TB 40 : 40Ø [1.57]	E:EPDM	12F: Female th	readG1/2″	18M20 I:18M×20 Stroke 18M30 L:18M×30 Stroke							
TB 50 : 50Ø [1.97″]				$18M50$ L : $18M \times 50$ Stroke							
TB 75 : 75Ø [2.95″]				18M50 I:18M×50 Stroke 12M30 L:12M×30 Stroke							
TB110 : 110Ø [4.33″]				$12M50$ L : $12M \times 50$ Stroke							
TB 150 : 150Ø [5.91″]				12M30 I : 12M×30 Stroke							
		(4) Chec	k Valve	(Possible Option Stroke)							
		- CV : With che	ck valve								
		– None : No che	eck valve								

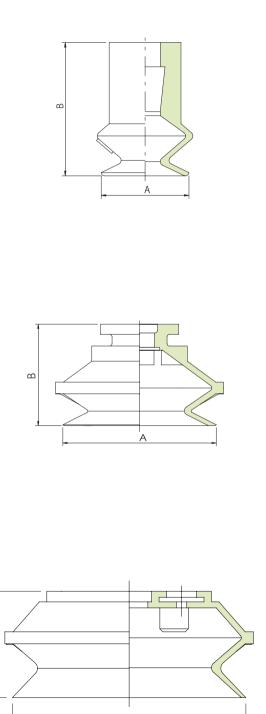
Model TB Type

• Lifting Force (Kg) at vacuum level

Machi	Pe	rpendicu	lar		Parallel		Volume	Min. Radial	Demorto
Model	-20kpa	-60 kpa	-90kpa	-20kpa	-60 kpa	-90kpa	Cm³	Motion (mm) (inches)	Remarks
TB5	0.03	0.08	0.1	_	_	_	0.05	1.4 [0.06″]	
TB8	0.08	0.16	0.26		_	_	0.15	1.8 [0.07″]	
TB10	0.15	0.35	0.5	-	_	_	0.4	4 [0.16″]	
TB15	0.3	0.6	0.91		_	—	1.1	4.8 [0.19″]	
TB20	0.6	1	1.43	_	_	_	2.7	10 [0.39″]	
TB30	1.22	2.24	2.76	-	_	_	10	15 [0.59″]	
TB40	2.24	3.98	5	_	_	_	15	20 [0.79″]	
TB 50	3.37	6.63	8.37	_	_	_	32	30 [1.18″]	
TB75	7.55	17.1	23.1	_	_	-	110	40 [1.57″]	
TB110	14	35	47.1	_	_	_	310	60 [2.36″]	
TB150	30	70	90.1	_	_	_	650	75 [2.95″]	

Model TB Type

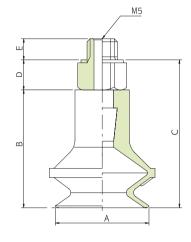
Dimensional information


Very Small Pad(Ø2[0.08"] ~ Ø15[0.59"])								
Model	ØA	В						
TB5	Ø5.5 [3.74″]	9.5 [3.74″]						
TB8	Ø8.7 [4.57″]	12 [4.57 [~]]						
TB10	Ø11 [5.51 ~]	16 [5.51″]						
TB15	Ø16 [7.09″]	20 [7.09″]						

Small Pad(Ø20[0.79["]]~Ø50[1.97["]])

Model	ØA	В
TB20	Ø22 [0.87″]	20 [0.79″]
TB30	Ø32 [1.26″]	26 [1.02″]
TB 40	Ø42 [1.65″]	28 [1.10 [″]]
TB 50	Ø53 [2.09″]	35 [1.38″]

Medium·Large Pad(Ø75[2.95″]~Ø130[5.12″])								
Model	ØA	В						
TB75	Ø78 [3.07″]	37 [1.46″]						
TB110	Ø116 [4.57″]	54 [2.13″]						
TB150	Ø156	71 [2.80]]						


А

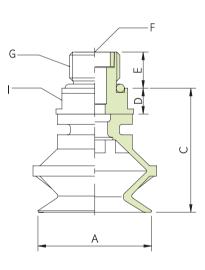
Model TB Type

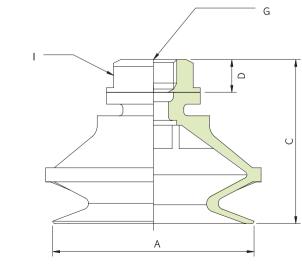
Dimensional information included Fitting

Very Small Male Thread

Model	ØA	В	С	D	E
TB5-M5	5.5	9.5	13.5	4	4
	[0.22″]	[0.37″]	[0.53″]	[0.16″]	[0.16″]
TB8-M5	8.7	12	16	4	4
	[0.34″]	[0.47″]	[0.63″]	[0.16″]	[0.16″]
TB10-M5	11	16	21	5	4
	[0.43″]	[0.63″]	[0.83″]	[0.20″]	[0.16″]
TB15-M5	16	20	25	5	4
	[0.63″]	[0.79″]	[0.98″]	[0.20″]	[0.16″]

Model TB Type

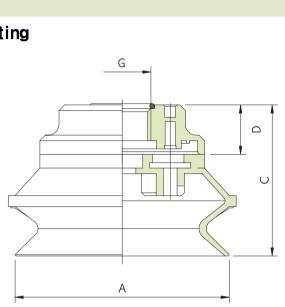

• Dimensional information included Fitting


Medium Male Thread

Model	ØA	С	D	G
TB75-18F	78 [3.07″]	57 [2.24″]	20 [0.79″]	G1/8″
TB75-14F	78 [3.07″]	57 [2.24″]	20 [0.79″]	G1/4″
TB75-38F	78 [3.07″]	57 [2.24″]	20 [0.79″]	G3/8″
TB75–12F	78 [3.07″]	57 [2.24″]	20 [0.79″]	G1/2″
TB110-12F	1 16 [4.57″]	74 [2.91″]	20 [0.79″]	G1/2″
TB150-12F	156 [6.14″]	91 [3.58″]	20 [0.79″]	G1/2″

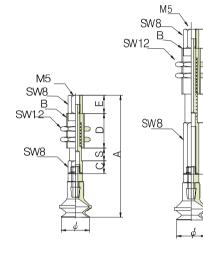
Small Male Thread

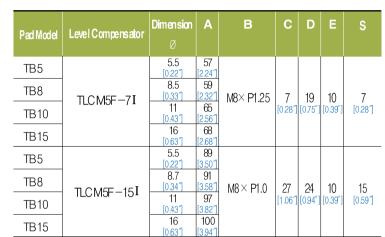
Model	ØA	С	D	E	F	G	I
TB20-M5-18F	22 [0.87″]	22 [0.87″]	2 [0.08″]	7 [0.28″]	M5	G1/8″	SW12
TB30-18M	32 [1.26″]	31 [1.22 [~]]	5 [0.20″]	7 [0.28″]	-	G1/8″	SW17
TB30-14M	32 [1.26″]	32 [1.26″]	6 [0.24″]	9 [0.35″]	_	G1/4″	SW17
TB40-18M	42 [1.65″]	33 [1.30″]	5 [0.20″]	7 [0.28″]	-	G1/8″	SW17
TB 40-1 4M	42 [1.65″]	34 [1.34″]	6 [0.24″]	9 [0.35″]	-	G1/4″	SW17
TB50-14M	53 [2.09″]	41 [1.61]]	6 [0.24″]	9 [0.35″]	_	G1/4″	SW24
TB50-38M	53 [2.09″]	41 [1.61 ″]	6 [0.24″]	9 [0.35″]	_	G3/8″	SW24

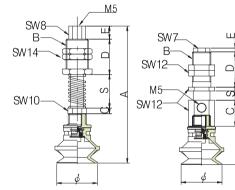


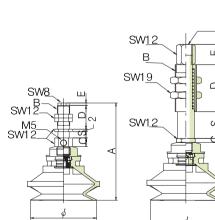
Very Small Female Thread

Model	ØA	С	D	G	
TB20-M5F	22 [0.87″]	28 [1.10″]	8 [0.31″]	G1/8″	SW12
TB30-18F	32 [1.26]]	36 [1.42″]	10 [0.39″]	G1/8″	SW17
TB40-18F	42 [1.65 [°]]	38 [1.50″]	10 [0.39″]	G1/8″	SW17
TB 50-18F	53 [2.09″]	45 [1.77″]	12 [0.47″]	G1/8″	SW24

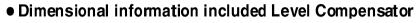


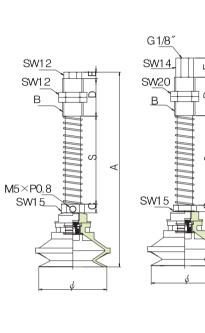


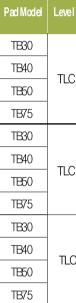

Suction Cups

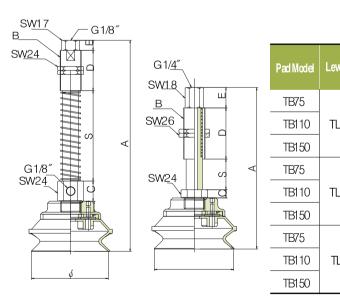

Model TB Type

• Dimensional information included Level Compensator






Pad Model	Level Compensator	Dimension Ø	A	В	С	D	E	S
	TLCM5M-10 I	22 [0.87″]	74 [2.91″]	M12× P1.0	3 [0.12″]	19 [0.75″]	7 [0 <i>2</i> 8″]	10 [0.39″]
TB20	TLCM5M-20 I	22 [0.87″]	84 [3.31″]	M12× P1.0	3 [0.12″]	19 [0.75″]	7 [0 <i>2</i> 8″]	20 [0.79″]
TB20	TLC18F-5L	22 [0.87″]	63 [2.48″]	M10× P1.0	15 [0.59″]	19 [0.75″]	3 [0.12″]	5 [020″]


Pad Model	Level Compensator	Dimension Ø	A	В	С	D	E	S
TB30		32 [1.26]]	69 [2.72 [″]]					
TB40		42 [1.65″]	71 [2.80 [″]]	M10× P1.0	7 [0.28″	10	2	5
TB50	TLC18M-5L	53 [2.09″]	79 [3.11″]			18 [0.71″]	2 [0.08″]	
TB75		78 [3.07″]	85 [3.35 [″]]					
TB30		32 [1.26″]	85 [3.35 [°]]					
TB40	TLC18M-10I	42 [1.65″]	87 [3.43 [°]]	M14× P1.5	4 [0.16″]	35 [1.38″]	16] [0.637]	10
TB50		53 [2.09″]	95 [3.74″]					
TB75		78 [3.07″]	100 [3.94″]					
TB30		32 [1 26″]	108 [4.25 [″]]					
TB40		42 [1.65″]	110 [4.33 [″]]	M16× P1.0		05	10	00
TB50	TLC18M-20I	53 [2.09″]	118 [4.65 [″]]		4 [0.16″]	35 [1.38″]	16 [0.63″]	20 [0.79″]
TB75		78 [3.07″]	124 [4.88″]					

Model TB Type

TOTAL AL VACUUM VAC. TECHNOLOGY

lCompensator	Dimension Ø	Α	В	С	D	Е	S
C18M-30 L	32 [1 26"] 42 [1 65"] 53 [209"] 78 [307"]	130 [5.12″] 132 [5.12″] 140 [5.51″] 146 [5.75″]	M14× P1.5	11 [0.43″]	31 [1 22″]	6 [0.24″]	30 [1.18″]
C18M-50L	32 [1 26"] 42 [1 65"] 53 [2.09"] 78 [3.07"]	150 [5.91] 152 [5.98] 160 [6.30] 166 [6.54]	M14× P1.5	11 [0.43″]	31 [1 22″]	6 [024″]	50 [1 97″]
C18M-50I	2 [1 26"] 42 [1 65"] 53 [2.09"] 78 [3.07"]	155 [6.10″] 157 [6.18″] 165 [6.50″] 171 [6.73″]	M16× P1.0	6 [024″]	31 [1 22″]	16 [0.63″]	50 [1.97″]

Level Compensator	Dimension Ø	A	В	С	D	E	S
TLC12M-30L	78 [307"] 116 [457"] 156 [6:14"]	171 [6.73"] 184 [7.24"] 199 [7.83"]	M20× P1.5	20 [0.79″]	40 [1 57"]	10 [0.39″]	30 [1.18″]
TLC12M-50L	78 [307"] 116 [457"] 156 [6:14"]	211 [8.31″] 224 [8.82″] 239 [9.41″]	M20× P1.5	20 [0.79″]	40 [1 57"]	10 [0.39″]	50 [1 97″]
TLC12M-30I	78 [307"] 116 [457"] 156 [6:14"]	159 [626"] 172 [6.77"] 187 [7.36"]	M22× P1.5	8 [0.31 ″]	50 [1 97″]	20 [0.79″]	30 [1.18″]

5 Model TD Type

• Features and Application

For having large internal volume, TD is suitable for handling the objects to be handled with longish and peaky like the top of egg.

• Use of Application

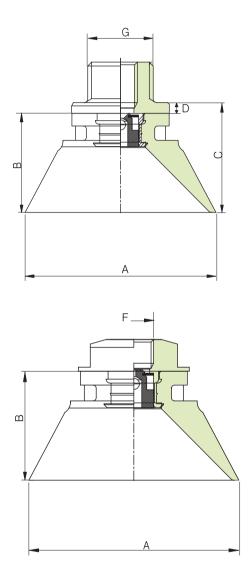
- metal sphere, large curved metal sheet, box packaging

		Ordering	g Informatio	n			
1 TD15	② - N	3 - 18M	④ - CV	⑤ - TLC18M30L	6 - TBJ 18		
(1) Pad Diameter Ø	② Material	③ Thread size		③ Thread size		⑤ Level Compensator	6 Ball Joint
TD15 : 15Ø[0.59"] TD20 : 20Ø[0.79"] TD30 : 30Ø[1.18"] TD50 : 50Ø[1.97"]	N : NBR S : Silicon U : Urethane C.S : C.Silicon E : EPDM	M5M : Male Thread M5 M5F : Female Thread M5 18M : Male Thread G1/8″ 18F : Female Thread G1/8″ 14M : Male Thread G1/4″ 38M : Male Thread G3/8″		TLC : TOTAL Level Compensator 18M5 L : 18M×5 Stroke 18M10 I : 18M×10 Stroke 18M20 I : 18M×20 Stroke 18M30 L : 18M×30 Stroke 18M50 L : 18M×50 Stroke 18M50 I : 18M×50 Stroke	TBJ 18 : Ball Joint 1/8″		
		(4) Check Valve		(Possible Option Stroke)			
		– CV : With che – None : No chi					

• Lifting Force (Kg) at vacuum level

Mashi	Perpendicular			Parallel			Volume	Min. Radial	Demostra
Model	-20kpa	-60 kpa	-90kpa	-20kpa	-60 kpa	-90kpa	Cm³	Moti on (mm) (inches)	Remarks
TD15	0.3	0.8	1.12	—	—	_	0.9	6.0 [0.24]	
TD20	0.6	1.53	1.84	_			2.5	8.0 [0.31″]	
TD 30	1.43	2.7	3.16				5.0	13 [0.51″]	
TD 50	3.67	7.96	10				15	25 [0.98″]	

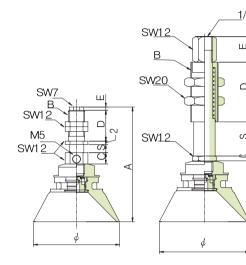
Model TD Type


Dimensional information

Model	ØA	В	С	D	G
TD20-18M	22 [0.87″]	13 [0.51 [″]]	25 [0.98″]	12 [0.47″]	G1/8″
TD30-18M	32 [1.26]]	19 [0.75″]	31 [1 <i>.22</i> ″]	12 [0.47″]	G1/8″
TD50-14M	53 [2.09″]	31.5 [1.24″]	46.5 [1.83″]	15 [0.59″]	G1/4″
TD 50-38M	53 [2.09″]	31.5 [1.24 [~]]	47.5 [1.87]	16 [0.63″]	G3/8″

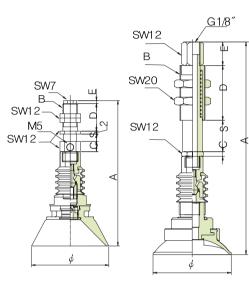
Small Female Thread

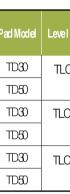
Model	ØA	В	F
TD 20 - M5	22 [0.87″]	20 [0.79″]	M5
TD 30 - M5	32 [1.26″]	26 [1.02]]	M5
TD 50-18F	53 [2.09″]	39.5 [1.56]]	G1/8″

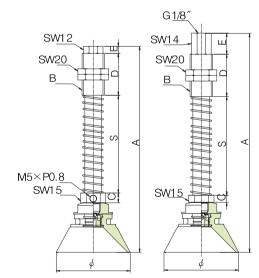


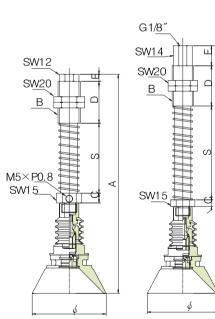
Suction Cups

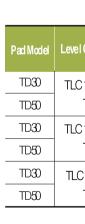

Model TD Type


• Dimensional information included Level Compensator




Pad Model	Level Compensator	Dimension Ø	A	В	С	D	E	S
TD20		22 [0.87″]	60 [2.36″]					
TD30	TLC18M-5L	32 [1.26″]	60 [2.36″]	M10× P1.0	15 [0.59″]	19 [0.75″]	3 [0.12″]	5 [020″]
TD50		53 [2.09″]	60 [2.36″]					
TD30	TLC18M-10I	32 [1.26″]	76 [2.99″]		4	35	16	10
TD50		53 [2.09″]	76 [2,99″]	M14×P1.5	[0.16″]	[1 38″]	16 [0.63"]	[0.39″]
TD30	TLC18M-20I	32 [1.26″]	99 [3.90″]		4	35	16	20
TD50		53 [2.09″]	99 [3.90″]	M16×P1.0	[0.16"]	[1.38″]	16 [0.63″]	[0.79″]





Pad Model	Level Compensator	Dimension Ø	A	В	С	D	E	S
TD30	TLC18M-30L	32 [1.26]	121 [4.76″]	M1.4× P1.5	11	31	6	30
TD50		53 [2.09″]	121 [4.76″]	MI4^ PI.3	[0.43″]	[122″]	[0.24″]	[1.18″]
TD30		32 [1.26]]	141 [5.55″]		11	31	6	50
TD50	TLC18M-50L	53 [2.09″]	141 [5.55″]	M14×P1.5	[0.43″]	[122″]	[0.24″]	[1.97″]
TD30	TLC18M-50I	32 [1 26″]	146 [5.75″]		6	31	16	50
TD50		53 [2.09″]	146 [5.75″]	M16×P1.0	[024″]	[122"]	[0.63″]	[1.97″]

el Compensator	Dimension Ø	Α	В	С	D	E	S
_C18M—5L TBJ18	32 [1.26"] 53 [2.09"]	87 [<u>3.43</u> "] 87 [3.43"]	M10× P1.0	15 [0.59″]	19 [0.75″]	3 [0.12″]	5 [020″]
C18M-10I TBJ18	32 [1.26"] 53 [2.09"]	103 [<u>4.06</u> "] 103 [4.06"]	M1.4× P1.5	4 [0.16″]	35 [1.38″]	16 [0.63″]	10 [039″]
C18M-20I TBJ18	32 [1.26"] 53 [2.09"]	126 [4.96″] 126 [4.96″]	M1.6× P1.0	4 [0.16″]	35 [1.38″]	16 [0.63"]	20 [0.79″]

l Compensator	Dimension Ø	A	В	С	D	E	S
C18M-30 L TBJ1 8	32 [1.26"] 53 [2.09"]	148 [<u>5.83</u> "] 148 [<u>5.83</u> "]	M14× P1.5	11 [0.43″]	31 [1 22"]	6 [0.24″]	30 [1.18″]
C18M-50L TBJ18	32 [1.26"] 53 [2.09"]	168 [<u>6.61</u> "] 168 [<u>6.6</u> 1"]	M14× P1.5	11 [0.43″]	31 [1 22"]	6 [0.24″]	50 [1.97″]
C18M—50 I TBJ18	32 [126″] 53 [2.09″]	173 [<u>6.81″]</u> 173 [<u>6.81″</u>]	M16× P1.0	6 [0.24″]	31 [1 22"]	16 [0.63″]	50 [1.97″]

6 Model TBL Type

• Features and Application

With 4 ea of bellows, this TBL suction cup can handle the large objects with height differences like TB vacuum pad's use.

Suitable for handling fragile objects to be handled by having a certain degree of shock absorption.

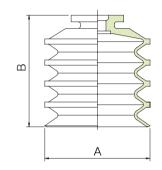
• Use of Application

- smooth material, fragile eggs, cup of glass, plate of glass, ice cream, etc.

		Ordering	g Informatio	n	
① TBL20	2 - N	3 - 18M	④ - CV	5 - TLC18M30L	6
(1) Pad Diameter Ø	② Material	3 Thre	ad Size	(5) Level Compensator	6 Ball Joint
TBL20 [0.79"] TBL30 [1.18"] TBL40 [1.57"]	N : NBR S : Silicon U : Urethane C.S : C.Silicon E : EPDM	M5F : Female T 18M : Male Thre 18F : Female Th 14M : Male Thre 38M : Male Thre	ad G1/8″ nread G1/8″ ad G1/4″	TLC : TOTAL Level Compensator M5M10 I : M5M×10Stroke M5M20 I : M5M×20 Stroke 18F5 L : 18F×5 Stroke 18M5 L : 18M×5 Stroke 18M10 I : 18M×10 Stroke 18M20 I : 18M×20 Stroke 18M30 L : 18M×30 Stroke 18M50 L : 18M×50 Stroke	
		(4) Chec	k Valve	(Possible Option Stroke)	
		– CV : With che – None : No che			

Model TBL Type

• Lifting Force (Kg) at vacuum level


Mashi	Pe	Perpendicular			Parallel		Parallel		Volume	Min. Radial	Demorilia
Model	-20 kpa	-60kpa	-90kpa	-20kpa	-60 kpa	-90kpa	Cm³	Motion (mm) (inches)	Remarks		
TBL20	0.03	0.06	—				4.0	4.0 [0.16″]			
TBL30	0.07	0.16					13	8.0 [0.31″]			
TBL40	0.11	0.22					27	15 [0.59″]			

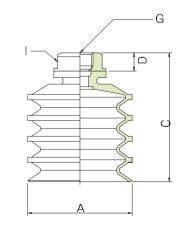
Model TBL Type

Dimensional information

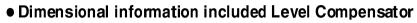
Small Male Thread($\emptyset 20[0.79''] \sim \emptyset 40[1.57'']$)

Model	ØA	В
TBL20	21 [0.83″]	22 [0.87″]
TBL30	31 [1 <i>.22</i> ″]	33 [1.30″]
TBL40	41 [1.61″]	43 [1.69″]

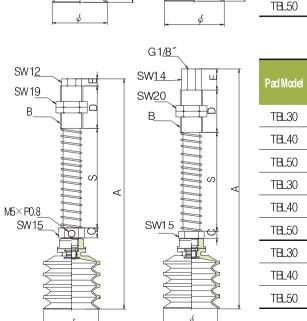
G-


Small Male Thread

Model	ØA	С	D	Е	G	I
TBL20-18M	21 [0.83″]	35 [1.38 [″]]	5 [0.20″]	7 [0.28″]	G1/8″	SW12
TBL30-14M	31 [1.22″]	38 [1.50 [″]]	6 [0.24″]	9 [0.35″]	G1/4″	SW17
TBL30-38M	31 [1.22″]	38 [1.50 [″]]	6 [0.24″]	10 [0.39″]	G3/8″	SW24
TBL40-14M	41 [1.61″]	48 [1.89″]	6 [0.24″]	9 [0.35″]	G1/4″	SW24
TBL40-38M	41 [1.61]]	48 [1.89 [″]]	6 [0.24″]	10 [0.39″]	G3/8″	SW24


А

Small Female Thread


Model	ØA	С	D	G	I
TBL20-M5	21 [0.83″]	29 [1.14″]	6 [0.24″]	M5	SW12
TBL30-18F	31 [1.22″]	39 [1.54″]	7 [0.28″]	G1/8″	SW17
TBL40-18F	41 [1.61 ″]	49 [1,93″]	7 [0.28″]	G1/8″	SW17

Model TBL Type

el Compensator	Dimension Ø	Α	В	С	D	E	S
CM5M-10 I	21 [083″]	78 [3.07″]	M12× P1.0	3 [0.12″]	19 [0.75″]	7 [0.28″]	10 [0.39″]
CM5M-20 I	21 [083″]	88 [3.46 [″]]	M12× P1.0	3 [0.12″]	19 [0.75″]	7 [0.28″]	20 [0.79″]
.C18F—5 L	21 [083″]	67 [2.64″]	M10× P1.0	15 [0.59″]	19 [0.75″]	3 [0.12″]	5 [0.20″]

el Compensator	Dimension Ø	Α	В	С	D	E	S
C18M-5L	31 [1 22"] 41 [1.61"] 51 [2.01"]	75 [2.95"] 85 [3.35"] 96 [3.78"]	M10× P1.0	15 [0.597]	19 [0.75″]	3 [0.12"]	5 [020″]
C18M-101	31 [1.227] 41 [1.617] 51 [2.017]	91 [3.58"] 100 [3.94"] 112 [4.41"]	M14×P1.5	4 [0.16″]	35 [1 38″]	16 [0.63"]	10 [0.39″]
C18M-201	31 [1.22"] 41 [1.61"] 51 [2.01"]	114 [4.49"] 124 [4.88"] 135 [5.31"]	M16× P1.0	4 [0.16″]	35 [1 38″]	16 [0.63″]	20 [0.79″]

Level Compensator	Dimension Ø	Α	В	С	D	E	S
TLC18M-30 L	31 [1 22"] 41 [1.61 ″] 51 [2.01 ″]	136 [5.35″] 146 [5.75″] 157 [6.18″]	M14× P1.5	11 [0.43″]	31 [1 22″]	6 [024″]	30 [1.18″]
TLC18M-50L	31 [1.22"] 41 [1.61"] 51 [2.01"]	156 [6.14"] 166 [6.54"] 177 [6.97"]	M14×P1.5	11 [0.43″]	31 [1 22″]	6 [024″]	50 [1.97″]
TLC18M-501	31 [1.22″] 41 [1.61″] 51 [2.01″]	161 [6.34"] 171 [6.73"] 182 [7.17"]	M16× P1.0	6 [024″]	31 [1 22″]	16 [0.63″]	50 [1.97″]

Model TFC Type

• Features and Application

With slightly curved and "TF" type of cleats in the base side, can handle both of flat and curved objects at the same time.

Designed to fit for perpendicular and horizontal lifting, and be used mainly for auto manufacturing process

• Use of Application

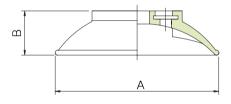
 auto's glass, auto's roof, auto's door, metal sheet lifting, feeding metal sheet into press, curved metal sheet, mechanical industry field.

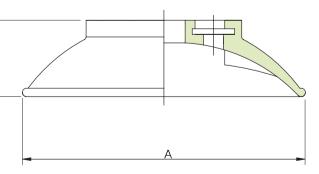
		Ordering	g Informatio	n	
1 TFC35	② - N	③ - 18F	(4) - CV	⑤ - TLC18M30L	6 - TBJ 18
() Pad Diameter Ø	2 Material	3 Thre	ad Size	6 Level Compensator	6 Ball Joint
TFC35 : 35Ø [1.38"] TFC50 : 50Ø [1.38"] TFC75 : 75Ø [1.38"] TFC100 : 100Ø [1.38"]	N : NBR S : Silicon U : Urethane CS : C.Silicon E :EPDM	18F : Female Th 14M : Male Thre 38M : Male Thre 12F : Female Th 38F : Female Th	ad 1/4″ ad 3/8″ nread 1/2″	TLC : TOTAL Level Compensator 18M10 I : 18M×10 Stroke 18M20 I : 18M×20 Stroke 18M30 L : 18M×30 Stroke 18M50 L : 18M×50 Stroke 18M50 I : 18M×50 Stroke 12M30 L : 12M×30 Stroke 12M30 I : 12M×30 Stroke	TBJ 18 : Ball Joint 1/8″ TBJ 12 : Ball Joint 1/2″
		(4) Chec	k Valve	(Possible Option Stroke)	
		– CV : With che – None : No che			

Model TFC Type

• Lifting Force (Kg) at vacuum level

Model	Pe	rpendicu	ar		Parallel		Volume	Min. Radial Moti on Remark	
WOGET	-20 kpa	-60 kpa	-90kpa	-20kpa	-60 kpa	-90kpa	Cm³	(mm) (inches)	Remarks
TFC35	1.16	3.67	5.2	2.76	5.2	6.33	5.0	32 [1.26″]	
TFC50	2.86	7.86	10.51	5	8.37	10.2	10	53 [2.09″]	
TFC75	7.45	16.02	21.94	10.92	20.41	23.47	30	78 [3.07″]	
TFC100	13.98	28.98	38.47	17.96	32.45	42.86	80	110 [4.33″]	

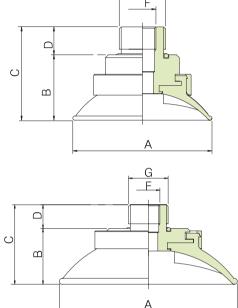

Dimensional information


Small (Ø35[1	.38″]∼Ø	50 [1.97	´])

Model	ØA	В
TFC35	36.5 [1.44″]	15 [0.59″]
TFC50	51 [2.01 ″]	16.5 [0.65″]

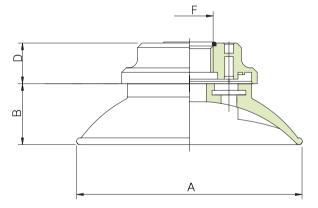
Large (Ø75	2.95″]~Ø1	00[3.94″])
Model	ØA	В
TFC75	77 [3.03″]	23.5 [0.93″]
TFC100	100 [3.94″]	27 [1.06″]

m

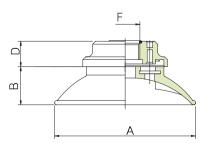


Model TFC Type

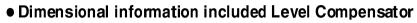
• Dimensional information included Fitting

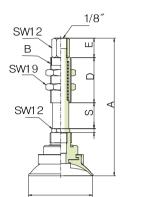

Small Male Thread										
Model	ØA	В	С	D	F	G				
TFC50-38M	51 [2.01 ~]	16.5 [0.65″]	27 [1.06″]	10 [0.39″]	G1/8″	G3/8″				

Large Mal	e Thre	ad					
Model	ØA	В	С	D	F	G	
TFC75-38M	77 [3.03″]	23.5 [0.98″]	34 [1.34″]	10 [0.39″]	G1/8″	G3/8″	

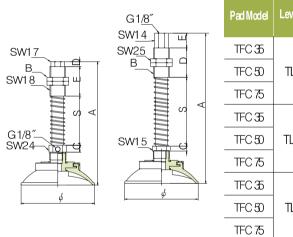

G

Large Fema	ale Thre	ead		
Model	ØA	В	D	F
TFC100-12M	100 [3.94″]	27 [1.06″]	17 [0.67″]	G1/2″

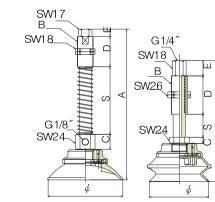



Small Female Thread

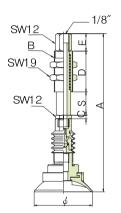
Model	ØA	В	D	F
TFC35-18F	36.5 [1.44″]	24 [0.94″]	8 [0.31″]	G1/8″



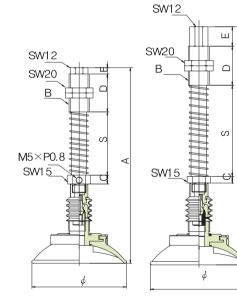

Model TFC Type



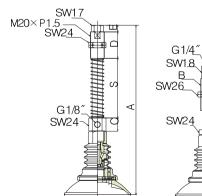
Pad Model	Level Compensator	Dimension Ø	A	В	С	D	E	S
TFC 35		36.5 [1.44″]	74 [2.91″]					
TFC 50	TLC18M-101	51 [2.01″]	77 [3.03 [°]]	M14× P1.5	4 [0.16″]	35 [1.38″]	16 [0.63″]	10 [0.39″]
TFC 75		77 [3.03″]	84 [3.31″]					
TFC 35		36.5 [1.44″]	97 [3.82 [″]]					
TFC 50	TLC18M-201	51 [2.01″]	100 [3.94″]	M14×P1.5	4 [0.16″]	35 [1.38″]	16 [0.63″]	20 [0.79″]
TFC 75		77 [3.03″]	107 [421″]					


Pad Model	Level Compensator	Dimension Ø	Α	В	С	D	Е	S
TFC 100	TLC12M-30L	100 [394″]	164 [6.46"]	M20× P1.5	20 [0.79″]	40 [1.57″]	10 [0.39″]	30 [1.18″]
TFC 100	TLC12M-50 L	100 [394″]	204 [8.03]	M20× P1.5	20 [0.79″]	40 [1.57″]	10 [0.39″]	50 [1.97″]
TFC 100	TLC12M-301	100 [394″]	152 [5.98″]	M20× P1.5	8 [0.31″]	50 [1.97″]	20 [0.79″]	30 [1.18″]

TOTAL VAC. VACUUM TECHNOLOGY


elCompensator	Dimension Ø	Α	В	С	D	E	S
C18M-30L	36.5 [1.44"] 51 [2.01"] 77 [3.03"]	119 [4.69"] 122 [4.80"] 129 [5.08"]	M14× P1.5	11 [0.43″]	31 [1 22"]	6 [0.24″]	30 [1.18″]
C18M-50L	36.5 [1.44"] 51 [2.01"] 77 [3.03"]	139 [5.47"] 142 [5.59"] 149 [5.87"]	M14×P1.5	11 [0.43″]	31 [1 22″]	6 [024″]	50 [1 97″]
C18M−501	36.5 [1.44 ["]] 51 [2.01"] 77 [3.03"]	144 [<u>5.67″]</u> 147 [<u>5.79″]</u> 154 [<u>6.06″]</u>	M16×P1.0	6 [024"]	32 [1 26"]	17 [0.67″]	50 [1 97″]

Model TFC Type


• Dimensional information included Level Compensator & Ball Joint

Pad Mod	el	Level Compensator	Dimension Ø	A	В	С	D	E	S
TFC35	5		36.5 [1.44″]	102 [4.02 [‴]]					
TFC50)	TLC18M-10I TBJ 18	51 [2.01″]	104 [4.09″]	M14× P1.5	4 [0.16″]	35 [1 38″]	16 [0.63″]	10 [0.39″]
TFC75	5	10010	77 [3.03″]	111 [4,37″]					
TFC35	5		36.5 [1.44″]	124 [4.88″]					
TFC50)	TLC18M-20I TBJ 18	51 [2.01″]	127 [5.00″]	M14×P1.5	4 [0.16″]	35 [1.38″]	16 [0.63]	20 [0.79″]
TFC75	5	01001	77 [3.03″]	133 [524″]					-

PadModel	Level Compensator	Dimension Ø	A	В	С	D	E	S
TFC35	TLC18M-30L TBJ 18	36.5 [1.44″]	119 [4.69″]					
TFC50		51 [2.01″]	122 [4.80]]	M1.4× P1.5	11	31	6 [024″]	30 [1.18″]
TFC75	10010	77 [3.03″]	129 [5.08″]					
TFC35		36.5 [1.44″]	139 [5.47″]		11	11 31 43″] [1 22″]	6	
TFC50	TLC18M-50L TBJ18	51 [2.01″]	142 [5.59″]	M14×P1.5				50 [1,97″]
TFC75		77 [3.03″]	149 [5.87″]		[0.10]	(122)	[021]	[101]
TFC35	-	36.5 [1.44″]	144 [5.67″]					
TFC50	TLC18M-50I TBJ 18	51 [2.01″]	147 [5.79″]	M16×P1.0	6	32 [1 26]]	17 [0.67″1	50 [1.97″]
TFC75		77	154 [6.06″]		[UZ4]	[120]	[0.07]	[137]

B

Pad Model	Level Compensator	Dimension Ø	A	В	С	D	E	S
TFC100	TLC12M-30L TBJ 12	100 [394″]	205 [8.07″]	M20× P1.5	20 [0.79″]	40 [1.57"]	10 [0.39″]	30 [1.18″]
TFC100	TLC12M-50L TBJ 12	100 [394″]	245 [9.65″]	M20× P1.5	20 [0.79″]	40 [1 57"]	10 [0.39″]	30 [1.18″]
TFC100	TLC12M-30I TBJ 12	100 [394″]	193 [7.60″]	M22× P1.5	8 [0.31″]	50 [197″]	20 [0.79″]	30 [1.18″]

B Model TP Type

• Features and Application

Suitable for handling the objects with rough surfaces like blocks of stone, aggregate, concrete, and stone.

Soft sponge type of vacuum pad's holding on rough surfaces, completely not to make a leak Use mainly for heavy weight product. Repairable the part of pad.

• Use of Application

- blocks of stone, aggregate, concrete, etc., lifting heavy weight materials with rough surface

		Ordering	g Information	l	
(1) TP35	② - N	3 - 18F	(4) - CV	⑤ - TLC18M30L	⑥ - TBJ 18
(1) Pad Diameter Ø	2 Material	3 Thre	ad Size	(5) Level Compensator	6 Ball Joint
TP35 : 35Ø [1.38'] TP65 : 65Ø [1.38'] TP1 10 : 110Ø [1.38''] TP150 : 150Ø [1.38''] TP200 : 200Ø [1.38''] TP300 : 300Ø [1.38'']	N : NBR S : Silicon U : Urethane CS : C.Silicon E : EPDM	18F : Female Th 12F : Female Th		TLC : TOTAL Level Compensator 18M5L : 18M×5 Stroke 18M10 I : 18M×10 Stroke 18M20 I : 18M×20 Stroke 18M30 L : 18M×30 Stroke 18M50 L : 18M×50 Stroke 18M50 I : 18M×50 Stroke 12M30 L : 12M×30 Stroke 12M50 L : 12M×30 Stroke	TBJ18 : Ball Joint 1/8 TBJ12 : Ball Joint 1/2
		④ Chec	k Valve		
		- CV : With cher - None : No che		(Possible Option Stroke능)	

Model TP Type

• Lifting Force (Kg) at vacuum level

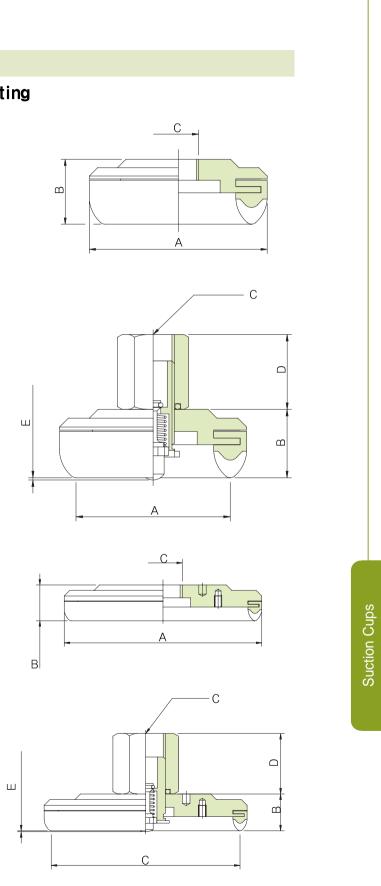
Model	Pe	erpendicu	lar	Parallel		Volume	Min. Radial Moti on	Remarks	
WOLET	-20 kpa	-60 kpa	-90kpa	-20kpa	-60 kpa	-90kpa	Cm³	(mm) (inches)	nemains
TP35	2.04	5.1	7.14	—		—	6		
TP65	6.12	15.31	22.45				23		
TP110	18.37	45.92	67.35	_	_	—	60		
TP150	38.3	97.2	138.6		_	—	127		
T200	76.53	193.8	275.5				545		
TP300	163.3	438.8	653.1				1290		

Model TP Type

Dimensional information included Fitting

Small Female Thread

Model	ØA	В	С
TP35-18F	35 [1.38″]	15.5 [0.61″]	G1/8″
TP65-18F	65 [2.56″]	15.5 [0.61″]	G1/8″

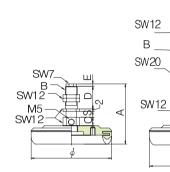

cone valve type									
Model	ØA	В	С	D	E				
TP35-18F-CV	35 [1.38″]	15.5 [0.61″]	G1/8″	17 [0.67″]	0.2~0.5				
TP65-18F-CV	65 [2.56″]	15.5 [0.61″]	G1/8″	17 [0.67″]	0.2~0.5				

Large Female Thread

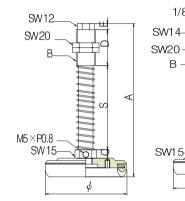
Model	ØA	В	С
TP110-12F	1 10 [4.33″]	19.5 [0.77″]	G1/2″
TP150-12F	150 [5.91″]	19.5 [0.77″]	G1/2″
TP200-12F	200 [7.87″]	19.5 [0.77″]	G1/2″
TP300-12F	300 [11.81″]	19.5 [0.77″]	G1/2″

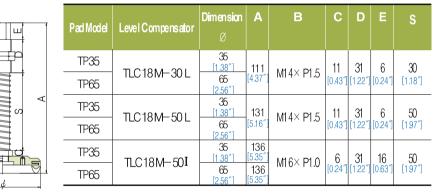
cone valve type								
Model	ØA	В	С	D	Е			
TP110-12F-CV	1 10 [4.33″]	19.5 [0.77″]	G1/2″	32 [1.26]]	0.2~0.5			
TP150-12F-CV	150 [5.91″]	19.5 [0.77″]	G1/2″	32 [1.26]]	0.2~0.5			
TP200-12F-CV	200 [7.87″]	19.5 [0.77″]	G1/2″	32 [1.26″]	0.2~0.5			
TP300-12F-CV	300 [11.81 [″]]	19.5 [0.77″]	G1/2″	32 [1.26″]	0.2~0.5 [0.01″][0.02″]			

Model TP Type


• Dimensional information included level Compensator

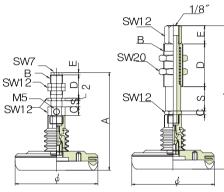
_1/8'

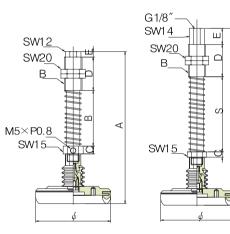

cr

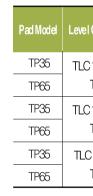

┶╨╤

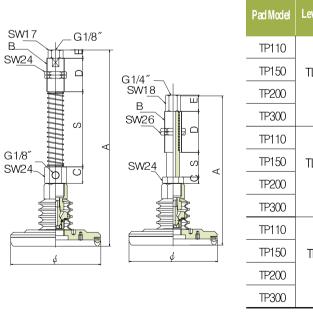

1/8″-

	Pad Model	Level Compensator	Dimension Ø	A	В	С	D	E	S
1	TP35	TLC18M-5L	35 [1.38″]	51	M10× P1.0	15	19	3	5
	TP65		65 [2.56″]	[2.01″]				[0.12″]	[020″]
c	TP35	TLC18M−10I	35 [1.38″]	66 [2.60″]		4	35	16	10
	TP65		65 [2.56″]	66 [2.60″]	M14× P1.5	[0.16″]	[1 38"]	[0.63″]	[0.39″]
	TP35	TLC18M-20I	35 [1.38″]	89 [3.50″]		4	35	16	20
_	TP65		65 [2.56″]	89 [3.50″]	M1.6× P1.0	[0.16″]	35 [138″]	[0.63″]	20 [0.79″]






Model TP Type



elCompensator	Dimension Ø	A	В	С	D	E	S
_C18M-5L TBJ 18	35 [138″] 65 [256″]	78 [307*]	M10× P1.0	15 [0.59*]	19 [0.75″]	3 [0.12″]	5 [0.20″]
.C18M−10I TBJ 18	35 [1.38″] 65 [2.56″]	93 [366*]	M1.4× P1.5	4 [0. 16"]	35 [1.38″]	16 [മങ്]	10 [0.39″]
<u>C18M-20</u> I TBJ 18	35 [1.38″] 65 [2.56″]	116 [457*]	M1.6× P1.0	4 [0. 16*]	35 [1.38″]	16 [0.ස"]	20 [0.79″]

el Compensator	Dimension Ø	Α	В	С	D	Е	S
C18M−30L TBJ18	35 [1.38″] 65 [2.56″]	138 [543*]	M14× P1.5	11 [0.48″]	31 [1.22″]	6 [0.24″]	30 [1.18″]
C18M-50L TBJ 18	35 [1.38″] 65 [2.56″]	158 [622″]	M14× P1.5	11 [0.48″]	31 [1.22″]	6 [0.24*]	50 [1.97″]
C18M—50I TBJ18	35 [1.38″] 65 [2.56″]	163 [642"]	M1.6× P1.0	6 [0.24"]	31 [1.22″]	16 [0.63"]	50 [1.97″]

Level Compensator	Dimension Ø	Α	В	С	D	E	S
TLC12M-30L TBJ 12	110 [433″] 150 [591″]	184 [724]		20	40	10	30
	200 [7.87"] 300 [11.81"]	199 [7.83″]	M20× P1.5	[0.79″]	[1.57"]	[0.39″]	[1.18″]
TLC12M-50L	110 [433″] 150 [591″]	224 [8.82″]	M20× P1.5	20 [0.79″]	40	10	50
TBJ 12	200 [787"] 300 [11.81"]	239 [9.41″]	WEU^ P1.3	[0.79″]	[1.57]	[0.39″]	[1.97″]
TLC12M-30I TBJ 12	110 [433″] 150 [591″]	172 [6.77″]	M00× D1 5	8 [0.31″]	50	20 [0.79″]	30 [1.18″]
	200 [787″] 300 [11.81″]	187 [7.36″]	M22× P1.5	[0.31″]	[1.97"]	[0.79″]	[1]]8″]

9 Custom-Designed Pad

Example of TPS Type Manufacturing

• Features and Application

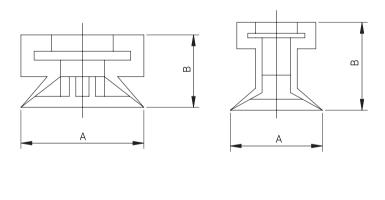
As a thin round pad with no cleats and smooth surface Be used easily for very smooth and deformable products such as thin vinyl bag, pouch envelop, film.

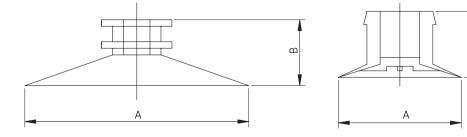
• Use of Application

foodstuffs packaging, PDP, LCD skin film lifting, paper handling, semiconductor's mark-free lifting

		Ordering	g Information	า	
① TPS -	2 S	③ ④ - 18F - CV		⑤ - TLC1810	⑥ - BJ 18
$\textcircled{1}$ Pad Diameter \varnothing	2 Material	3 Thre	ad Size	⑤ Level Compensator	6 Ball Joint
TPS15 [0.59"] TPS20 [0.79"] TPS25 [0.98"] TPS30 [1.18"] TPS40 [1.57"] TPS50 [1.97"]	N : NBR S : Silicon U : Urethane C.S : C.Silicon E : EPDM	M5 : Male Threa F5 : Female Thre 18M : Male Thre 18F : Female Th 14M : Male Thre	ead 1/4″ ad 1/8″ nread 1/8″	TLC : TOTAL Level Compensator M507 : M5×7 Stroke M510 : M5×10 Stroke 1810 : G1/8″×10 Stroke 1820 : G1/8″×20 Stroke (Possible Option Stroke)	BJ 18 : Ball Joint 1/8"

Model TPS Type

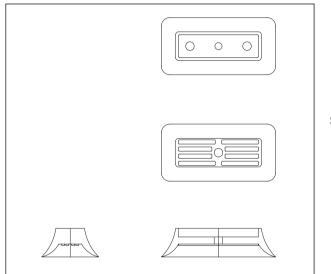

• Lifting Force (Kg) at vacuum level

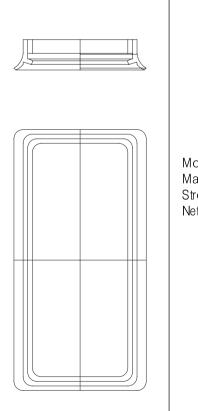

Model	Pe	erpendi cu	lar		Parallel		Volume	Min. Radial Moti on	Remarks
IVIOCET	-20kpa	-60kpa	-90kpa	-20kpa	-60 kpa	-90kpa	CM³	(mm) (inches)	nemarks
TPS 15	0.34	0.82	1.0	0.32	0.52	0.58	0.5	8 [0.31″]	
TPS 20	0.58	1.19	1.57	0.56	0.84	0.95	0.9	12 [0. 47″]	
TPS 25	0.89	1.80	2.28	0.65	0.90	0.99	1.50	16 [0.63″]	
TPS 30	1.18	2.44	2.98	0.75	0.95	1.04	1.92	19 [0.75″]	
TPS 40	2.0	3.88	4.87	1.35	2.12	2.64	5.45	28 [1.10″]	
TPS 50	3.48	7.22	9.11	1.98	3.64	4.30	11.8	34 [1.34″]	

Dimensional information

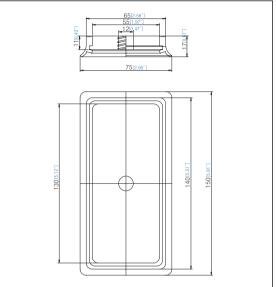
Small Pad(Ø15[0.59["]]~Ø50[1.97["]])

Model	ØA	В
TPS 15	16.7	9
TPS 20	22.0	10
TPS 25	26.8	12
TPS 30	32.2	13
TPS 40	42.4	14
TPS 50	53.5	16

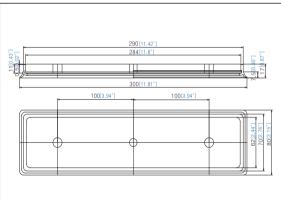



Example of TORC Type Manufacturing

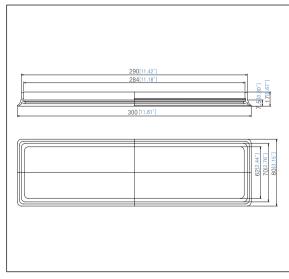
TORC 20×40


Model : TORC 20×40 Material : NBR, Si, PUR, SBR Stroke : 2.0mm [0.08"] Net wt : 20g

TORC 70 \times 140

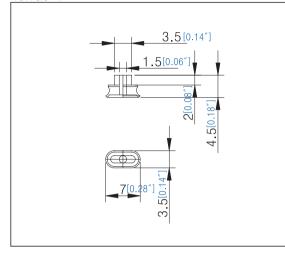


Model : TORC 70×140 Material : NBR, Si, NR Stroke : 1.5mm [0.06"] Net wt : 50g

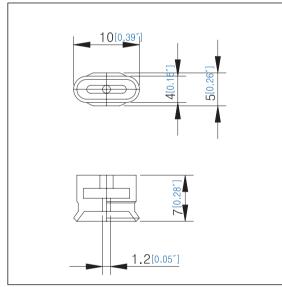


TORC 80×300A

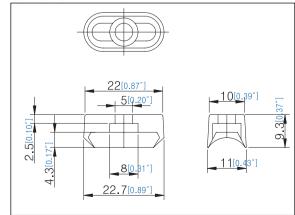
TORC $80 \times 300B$



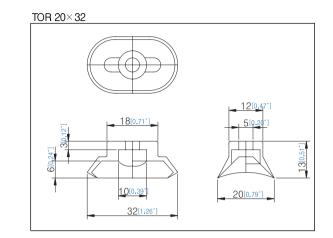
Model : TORC 75 ×150 Material : NBR, Si, NR Stroke : 1.5mm [0.06"] Net wt : 260g

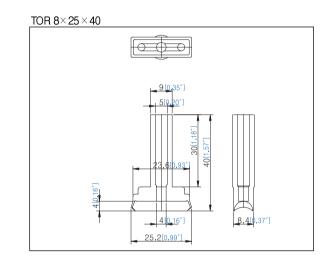

Model : TORC 80 ×300A Material : NBR, NR Stroke : 1.5mm [0.06"] Net wt : 500g

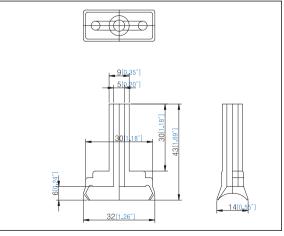
Model : TORC 80 ×300B Material : NB R, NR Stroke : 1.5mm [0.06"] Net wt : 100g TOR 3.5×7



Model : TOR 7.5×7 Material : NBR, NBR-AS, Si, PUR Stroke : 0.8mm [0.03"] Net wt : 5g




TOR 10×20


Model : TOR 5×7 Material : Si Stroke : 1.0mm [0.04"] Net wt : 10g

Model: TOR 10×20 Material: NBR, Si, PUR Stroke: 0.8mm [0.03"] Net wt: 15g

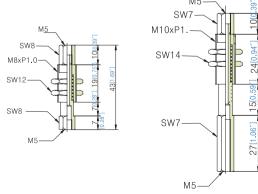
TOR 14×32×43

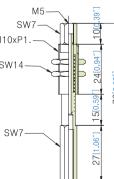
Model : TOR 20×32 Material : NBR, Si, PUR Stroke : 1.2mm [0.05"] Net wt : 30g

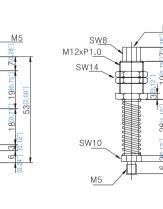
Model : TOR 8×25×40 Material : NBR, Si, PUR Stroke :0.5mm [0.02["]]

Model : TOR 14×32×43 Material : NBR, Si, PUR Stroke : 0.5mm [0.02"]

U Level Spring & Ball Joint


-Level Compensator's specification & dimensioin

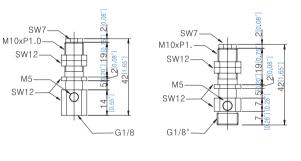

Use: When the objects to be handled are stacked in parallel to the earth, this absorbs the pad's height differences to keep in the certain position. Also provides a certain degree of shock absorption to protect products.



Model	Specification	Stroke (mm) (inches)	Remarks
TLC-M5F-7I		0~7 mm [0″~0.28″]	Use for suction cup up to
TLC-M5F-15I	Port size: M5 (Female; Male) Material: steel	0~15 mm [0″ ~0.59″]	Ø2~30 [Ø0.08 [″] ~1.18 [″]]
TLC-M5F-10I	Max. load: 3.2 kg	0~10 mm [0″ ~0.39″]	
TLC-M5F-20I		0~20 mm [0″ ~0.79″]	

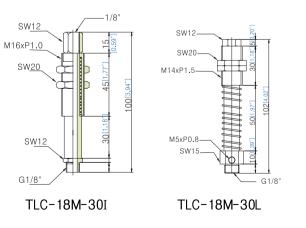
Dimension

TLC-M5F-7I

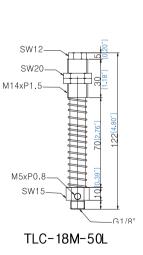

TLC-M5F-15I

TLC-M5M-10I

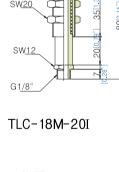
110-	M5M-20I	

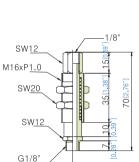

Model Specification TLC-18F-5L TLC-18M-5L TLC-18M-10I Port size: G 1/8" (Female; Mal TLC-18M-20I Material: steel Max. load: 24 kg TLC-18M-30I TLC-18M-30L TLC-18M-50L TLC-18M-50I

Dimension

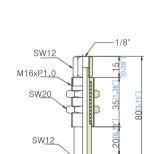



TLC-18F-5L


TLC-18M-5L



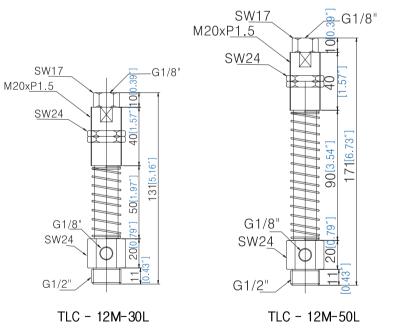
180 TOTAL VAC.

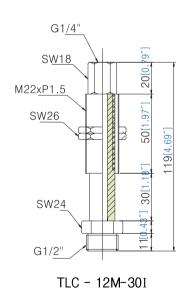


TLC-18M-10I

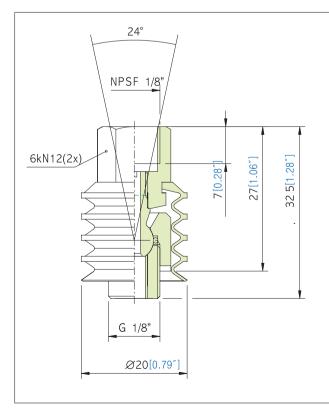
	Stroke (mm) (inches)	Remarks	
	0~5 mm [0″~0.20″]		
	0~5 mm [0″~0.20″]		
ale)	0~10 mm [0″~0.39″]	Les forquetion que un to	
	0~20 mm [0″~0.79″]	Use forsuction cup up to Ø10~100 [Ø0.39"~3.94"]	
	0~30 mm [0″~1.18″]		
	0~50 mm [0″~1.97″]		
	0~30 mm [0″~1.18″]		
	0~50 mm [0″~1.97″]		

TOTAL

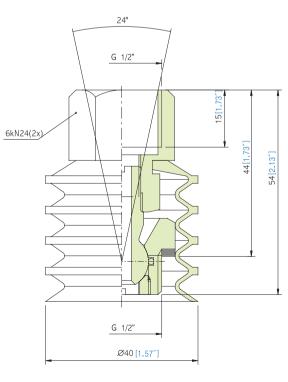

VAC. TECHNOLOGY


Model	Specification	Stroke (mm) (inches)	Remarks	
TLC-12M-30L	Port size: G 1/2" (Female; Male)	0~30 mm [0″~0.18″]		
TLC-12M-50L	Material: steel	0~50 mm [0″~1.97″]	Use for suction cup up to Ø75~200 [Ø2.95"~7.87"]	
TLC-12M-30I	Max.load:64kg	0~30 mm [0″~1.18″]		
Option	Possible to be made for the user's request of metric, U.S. Imperial, PT, PF, NPT, screw thread, stroke, etc			

Ball Joint's specification & dimension


Use: When the position of the objects to be handled is different from the level, even if the object has the angular difference, $\pm 12^{\circ}$ with vacuum pad, it is the TOTAL ball joint (TBJ-Series) that can lift and move the objects without any problems.

Plan & Dimension



Specification						
	1⁄8″ NPSF					
nce $\pm 12^{\circ}$ (totally 24°)	1⁄8″ Male					
	G 1⁄2″ Female					
nce : \pm 12° (totally 24°)	G 1⁄2″ Male					

1) Accesso ① Vacu 2 Vacu **3 Vacu** (4) Vacu 5 Vacu 6 Vacu 7 Ball J (8) Silen 2) Chemica

TOTAL VACUUM VAC. TECHNOLOGY

Accessories & Chap. Chemical Resistance Data

	186
ries	186
um Switch	193
um Gauge	194
um Solenoid Valve	195
um & Air Energy Saving Kit	196
um-Controlled Valve	199
um Filter	201
oint & Level Compensator	203
cer	200
al Resistance Data	201

1)Accessories

1) Vacuum Switch

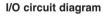
Use: Enable valve or other operating device to start by transferring vacuum generated by vacuum pump or vacuum generator into electrical signals to send to the PLC or RELAY. This displays vacuum level concurrently (also playing a vacuum gauge's role), and by user's easy handling, is possible to be used up to Low-High's 2 points in the units of -kPa, mmHg.G, inHg, bar, etc.

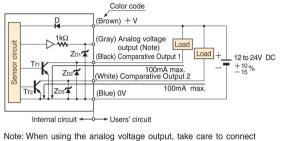
It is based on the specifications below.

Switch's specification and how to use

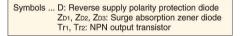
	DP-20
-Model	DP-60
	DP-80
• Origin	Sunx (Made in Japan)
•··· j ···	Keyence (Made in Japan)
Copal (Made in Japan)	
	Motorolla (Made in U.S.A)

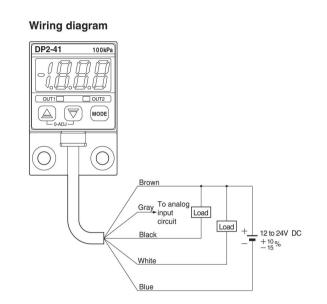
• Electric, mechanical, non-touch, pneumatic, etc. are there many types of switch that can be selected to fit your own working condition by you, and they all are compatible with TOTAL vacuum pump.

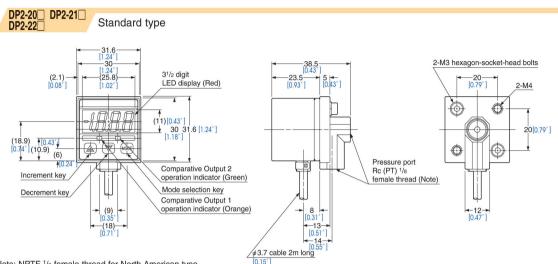

SPECIFICATIONS


1			Vacuum pressure				
Туре			— 101k	Pa type			
			Standard	Light weight	Flat	IP67	
	Š	Asian	DP2-20	DP2-80		DP2-60	
		North American (Note)	DP2-20F(-P)	· · · · · · · · · · · · · · · · · · ·	DP2-40N	DP2-60N	
Iter	Model	European			DP2-40E	DP2-60E	
	e of pre	-					
		sure range		0 to - 1	01.3kPa		
Set pressure range			{ 0.74 to −	5.1 to — - 1.033kgf/cn 14.70psi, 38	101.3kPa 1 ² . 0.051 to -	– 1.013bar` ìHg	
Pre	SSUIRE M	vithstandability	(1.5 to -2)	9.9inHg		49	
	olicable					+5	
<u></u>	ectable		kPa	kgf/cm ² , bar,	nsi mmHa	inHa	
	oply vol		Ki u,	rigi/citri , bai,	poi, minig,	12 to 24	
		nsumption				12 10 24	
Cor (Co	nparativ ompara	ve outputs tive Output 1) tive Output 2)	NPN open-o • Maximu • Applied v	h American (St collector trans um sink curre roltage: 30V DC al voltage: 1\ 0.4	sistor nt: 100mA or less (betweel	n comparative 00mA sink	
1	Utiliza	tion category					
		t modes		with 4 types of the sectable by key		steresis moo	
	Hyster	resis			I digit (howe	ver, variable	
	Repea	atability					
	Respo	onse time					
	Short-	circuit protection					
Analog voltage output		Zero-p Span: Linear	t voltage: 1 to point: within 1 within 4V±! ity: within± t impedance:	V ± 5% F.S. 5% F.S. 1% F.S.			
Dis	play				31/2 di	igit red LED	
Displayable pressure range		yable pressure range	5.1 to - 101.3kPa 0.052 to - 1.033kgf/cm ² , 0.051 to - 1.013bar 0.74 to - 14.70psi, 38 to - 760mmHg 1.5 to - 29.9inHg				
	Appleg her display					Ĵ,	
Ana	alog bar	display				,	
	alog bar eration	display Comparative Output 1			Ora	LED bar	
Ope						LED bar nge LED (li	
Ope indi	eration cators	Comparative Output 1				LED bar nge LED (li	
Ope indi	eration cators	Comparative Output 1 Comparative Output 2 on degree			Gre	LED bar nge LED (li een LED (lig	
Ope indi	eration cators Polluti Protec	Comparative Output 1 Comparative Output 2 on degree			Gre	LED bar nge LED (li een LED (lig Flat and Lig	
Ope indi	eration cators Polluti Protec Ambie	Comparative Output 1 Comparative Output 2 on degree ttion			Gre Standard,	LED bar nge LED (li een LED (lig Flat and Lig ; (No dew c	
Ope indi	eration cators Polluti Protec Ambie	Comparative Output 1 Comparative Output 2 on degree stion nt temperature			Gre Standard,	LED bar nge LED (li een LED (lig Flat and Lig : (No dew co 35 to	
Ope indi	Polluti Protect Ambie EMC	Comparative Output 1 Comparative Output 2 on degree stion nt temperature			Gre Standard,	LED bar nge LED (li een LED (lig Flat and Lig (No dew cr 35 to Emission	
Ope indi	Polluti Protect Ambie EMC Voltag	Comparative Output 1 Comparative Output 2 on degree tition nt temperature nt humidity			Gre Standard, 10 to + 50°C V AC for one	LED bar nge LED (lig een LED (lig Flat and Ligg (No dew co 35 to Emission e min. betwe	
Ope indi	Polluti Protect Ambie EMC Voltag Insula	Comparative Output 1 Comparative Output 2 on degree tition nt temperature nt humidity e withstandability		1,000 50MΩ, or mo	Gre Standard, 10 to + 50°C V AC for one	LED bar nge LED (li een LED (li Flat and Lig i (No dew ca 35 to Emission e min. betwe / DC megge	
Ope	Polluti Protect Ambie EMC Voltag Insula	Comparative Output 1 Comparative Output 2 on degree tition nt temperature nt humidity e withstandability tion resistance		1,000 50MΩ, or mo 10 to	Gra Standard, 10 to + 50°C V AC for one re, with 500\	LED bar nge LED (li een LED (lig Flat and Lig (No dew cr 35 to Emission e min. betwe / DC megge Jency, 0.75r	
Environmental resistance	Polluti Protect Ambie Ambie EMC Voltag Insula Shock	Comparative Output 1 Comparative Output 2 on degree tition nt temperature nt humidity e withstandability tion resistance on resistance		1,000 50MΩ, or mo 10 tc 10	Gra Standard, 10 to + 50°C V AC for one rre, with 500\ 150Hz frequ	LED bar nge LED (li een LED (lig Flat and Lig (No dew cr 35 to Emission e min. betwe / DC megge Jency, 0.75r eration (100	
Environmental resistance	Polluti Protect Ambie Ambie EMC Voltag Insula Shock	Comparative Output 1 Comparative Output 2 on degree tition nt temperature nt humidity e withstandability tion resistance ion resistance resistance		1,000 50MΩ, or mo 10 to 10 Over amb	Gra Standard, 10 to + 50°C V AC for one re, with 500\ 150Hz frequ 00m/s ² accele	LED bar nge LED (li een LED (li flat and Lig (No dew ca 35 to Emission e min. betwee / DC megge uency, 0.75r eration (100 ture range	
and Environmental resistance	Portion cators Polluti Protec Ambie EMC Voltag Insula Vibrati Shock nperatu	Comparative Output 1 Comparative Output 2 on degree tition nt temperature nt humidity e withstandability tion resistance ion resistance resistance re characteristics Asian		1,000 50MΩ, or mo 10 tc 10 Over amb Standarc	Gra Standard, 10 to + 50°C V AC for one re, with 500\ 150Hz frequ 00m/s ² accele ient tempera I, Flat and IF	LED bar nge LED (li een LED (li flat and Lig (No dew ca 35 to Emission e min. betwee / DC megge Jency, 0.75r eration (10G ture range 67 types: Fi	
Environmental resistance	Portion cators Polluti Protec Ambie EMC Voltag Insula Vibrati Shock nperatu	Comparative Output 1 Comparative Output 2 on degree tition In temperature In temperature In thumidity e withstandability e withstandability tion resistance resistance re characteristics Asian North American		1,000 50MΩ, or mo 10 tc 10 Over amb Standarc	Gra Standard, 10 to + 50°C V AC for one re, with 500\ 150Hz frequ 00m/s ² accele ient tempera	LED bar nge LED (lig een LED (lig Flat and Lig (No dew c 35 to Emission e min. betwe / DC megge Jency, 0.756 eration (100 ture range 67 types: F NPTF 1/8 fe	
Environmental resistance	Portion cators Polluti Protec Ambie EMC Voltag Insula Vibrati Shock nperatu	Comparative Output 1 Comparative Output 2 on degree tition nt temperature nt humidity e withstandability tion resistance ion resistance resistance re characteristics Asian	Front case: Pressure po	1,000 50MΩ, or mo 10 tc 10 Over amb Standarc	Gra Standard, 10 to + 50°C V AC for one re, with 500\ 150Hz frequ 00m/s ² accele ient tempera d, Flat and IP ndard type: N ase: PPS (gl Die-cast zinc	LED bar nge LED (li een LED (li en LED (li flat and Lig c (No dew cr 35 to Emission e min. betwe / DC megge ency, 0.75r eration (100 ture range 67 types: R NPTF ¹ / ₈ fe Flat and ass fiber reis alloy [Light	
Environmental resistance	Protectors Polluti Protectors Ambie EMC Voltag Insula Vibrati Shock mperatu ssure t	Comparative Output 1 Comparative Output 2 on degree tition In temperature In temperature In thumidity e withstandability e withstandability tion resistance resistance re characteristics Asian North American	Front case: Pressure po	1,000 50MΩ, or mo 10 to 10 Over amb Standarc Sta ABS, Rear c rt attachment:	Great Standard, 10 to + 50°C V AC for one re, with 500V 150Hz frequ 00m/s ² accele ient temperat d, Flat and IP ndard type: N ase: PPS (gl Die-cast zinc nly): Polycard	LED bar nge LED (li een LED (li en LED (li flat and Lig c (No dew cr 35 to Emission e min. betwe / DC megge ency, 0.75r eration (100 ture range 67 types: R NPTF ¹ / ₈ fe Flat and ass fiber reis alloy [Light	
Environmental resistance Ten Mat	Protectors Polluti Protectors Ambie EMC Voltag Insula Vibrati Shock mperatu ssure t	Comparative Output 1 Comparative Output 2 on degree ttion Int temperature Int humidity e withstandability tion resistance ion resistance resistance re characteristics Asian North American European	Front case: Pressure po Front cover	1,000 50MΩ, or mo 10 to 10 Over amb Standarc Sta ABS, Rear c rt attachment:	Gravest Standard, Standard, 10 to + 50°C V AC for one re, with 500V 150Hz frequ 00m/s ² acceled ient temperat d, Flat and IP ndard type: N ase: PPS (gl Die-cast zinc nly): Polycart 0.15mm ² 5	LED bar nge LED (li een LED (li en LED (li flat and Lig c (No dew cr 35 to Emission e min. betwe / DC megge tency, 0.75r eration (100 ture range 67 types: R NPTF ¹ / ₈ fer Flat and ass fiber rei c alloy [Light ponate -core oil res	
Environmental resistance Ten Mat	eration cators Pollutit Protec Ambie EMC Voltag Insula Vibrati Shock mperatu ssure t terial	Comparative Output 1 Comparative Output 2 on degree ttion Int temperature Int humidity e withstandability tion resistance ion resistance resistance re characteristics Asian North American European	Front case: Pressure po Front cover Extension u	1,000 50MΩ, or mo 10 to 10 Over amb Standarc Sta ABS, Rear c rt attachment: (IP67 type o	Great Standard, 10 to + 50°C V AC for one re, with 500V 150Hz frequ 00m/s ² accele ient temperat d, Flat and IP ndard type: N ase: PPS (gl Die-cast zinc nly): Polycart 0.15mm ² 5 m [in order to	LED bar nge LED (li een LED (li en LED (li flat and Lig c (No dew cr 35 to Emission e min. betwe / DC megge uency, 0.75r eration (10G ture range 67 types: R NPTF 1/8 fei Flat and ass fiber rei c alloy [Light onate -core oil res o conform to	

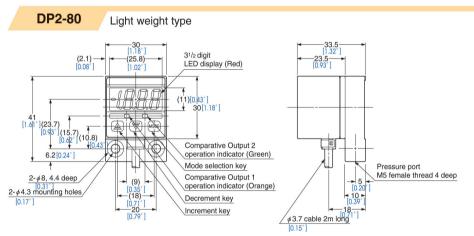
_							
	Positive pressure						
	-	100kPa type	e		1MPa type		
	Standard	Flat	IP67	Standard	Flat	IP67	
	DP2-21	DP2-41	DP2-61	DP2-22	DP2-42	DP2-62	
	DP2-21F(-P)	DP2-41N	DP2-61N	DP2-22F(-P)	DP2-42N	DP2-62N	
		DP2-41E	DP2-61E		DP2-42E	DP2-62E	
	Gauge p	oressure					
	(0 to 100.0kPa	a	C	to 1.000MP	a	
	- 5.0 to 100.0kPa - 0.050 to 1.000MPa (-0.051 to 1.020kgf/cm ²) (-0.51 to 10.20kgf/cm ²)						
ļ		51 to 1.020k			51 to 10.20kg 50 to 10.00ba		
		'2 to 14.50ps			2 to 145.0psi		
0	kPa				1.47MPa		
	Non-corr	osive gas					
		, kgf/cm², bar		MPa	, kgf/cm², ba	r, psi	
V	DC + 10% F	Ripple P-P 10	0% or less				
_	50mA	or less					
ł	IP67 types)>			dard PNP out	put type), Eu	iropean>	
			collector tran um source ci	urrent: 100m/	4		
	utput and 0V)			or less (betwee			
	urrent) current)	 Hesidu 	iai voitage: 2	V or less (at	I UUTTIA SOURC	e current)	
	,	or DC-13					
d	e, window co	mparator mo	de, dual outp	out mode, aut	omatic sensi	tivity setting	
-			-	using psi unit)		
٧	Within $\pm 0.2\%$	-	it				
		or less					
	Incorp	orated					
e	range)		5	~~~~			
			de C				
			oltag				
					pressure (Positive p vacuum (Vacuum p		
	l'anlau (Carr	-					
(display (Sam	5.0 to 100.0k			050 to 1 000	MPo	
		5.0 to 100.0k			.050 to 1.000 51 to 10.20kg		
ł	< -0.0	50 to 1.000b	oar }	{-0.	50 to 10.00b	ar }	
_		'2 to 14.50ps		(-7.	2 to 145.0psi)	
-	display in step						
-	hts up when			,			
-	ts up when ((אוכ			
-	3 (Industrial	,					
	nt weight type			-10 to + 60	٥°C		
				1010 100			
-	85% RH, Stor EN50081-2,						
-				ther and encl	OSUIRA		
-				ed together a		2	
-				or two hours		,	
-				ree times ea			
-				ected pressu			
-				pe: M5 fema			
-				1/8 female thr			
-	P67 types: G						
-	forced), Disp						
				, pressure po	rt is brass (nic	ckel plated)]	
			(ID				
-	stant cabtyre				0 0 °		
-		and a second second		possible with	and the second se		
-				ight weight ty		rox.	
s	ure port: 1 N	o. (Standard	type only), P	ressure unit	abel: 1 No.		
λ	utput type.						


I/O CIRCUIT AND WIRING DIAGRAMS

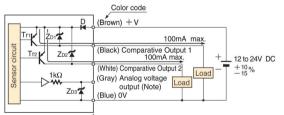

NPN output type



external device of proper input impedance. Also, when a cable extension is used, voltage drop due to cable resistance should be taken into account.



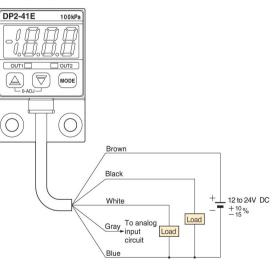
DIMENSIONS (Unit: mm)

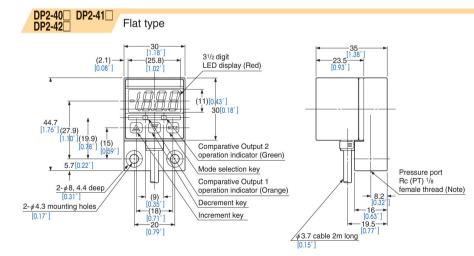


Note: NPTF ¹/₈ female thread for North American type.

PNP output type

I/O circuit diagram

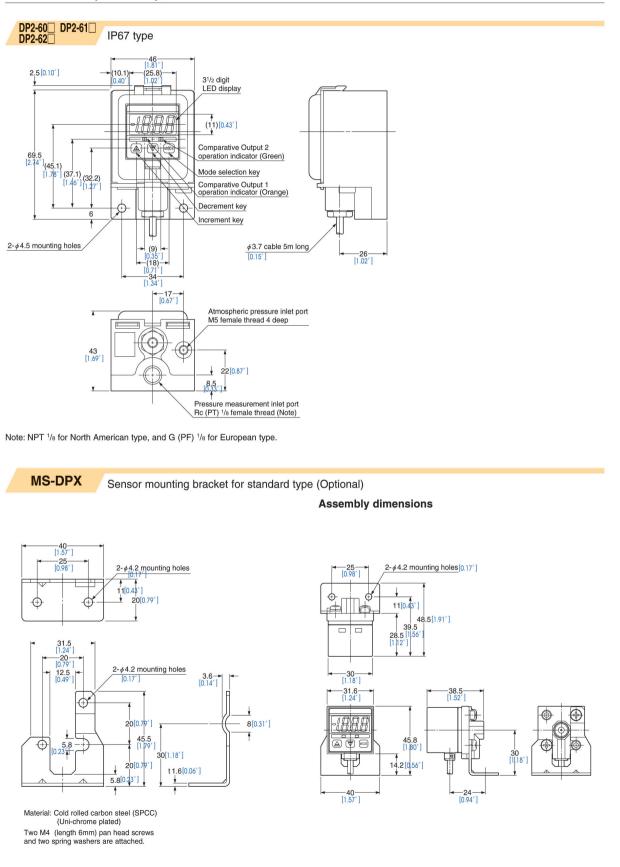



Internal circuit

Note: When using the analog voltage output, take care to connect external device of proper input impedance. Also, when a cable extension is used, voltage drop due to cable resistance should be taken into account.

Symbols ... D: Reverse supply polarity protection diode ZD1, ZD2, ZD3: Surge absorption zener diode Tr1, Tr2: PNP output transistor

Wiring diagram



Note: NPT 1/8 female thread for North American type, and G (PF) 1/8 female thread for European type.

DIMENSIONS (Unit: mm)

1 SETTING		③ Setting of pre	
protect befor PROTECT F	ct has been set, make sure to release key- re operating the keys. (Please refer to 15 KEY- UNCTION for the procedure.)	For the case when c (_H), window compa	
Kindly note	Ins which are set are stored in an EEPROM. that the EEPROM has a life span and its ife is 100,000 write operation cycles.	 [Set Value 1 (P1 outputs are set. 	 and [Set Value]
Setting proce	dure	The setting of Setting of Set (P1) can only be	
① Zero-point	Initial Pressure Measurement	the positive pres- vacuum side in c	ase of the vacuu
adjustment Adjust	setting value setting Set [Display], Enter Commence	Set Value 1 (P1) for all the output	t modes. Howev
zero-point	[Output mode], and [Unit] Set Value 2 (P2) Set Value 3 (P3) of setting	made to the aut Value 3 (P3) has pressure value se	s not been set,
1 Zero-point	adjustment	Set	to Set Value 1 (F
 The displayed adjusted to ze 	d pressure when the pressure port is left open is ero.	072-20	In the sensing P-1 and Se
	Set to sensing mode		set are displ • The figure o
	 The sensor will automatically enter the sensing mode when power is supplied. 	(The second sec	a vacuum pi pressure uni
	The figure on the left shows the display when the pressure unit and display are set to "Def and "distributed display" association.	Displayed alternately	
- G -	to 'kPa' and 'digital display', respectively.		
	Perform zero-point adjustment		
	 Let the pressure port be at atmospheric pressure (i.e., no applied pressure condi- 		\bullet
	tion), and press, simultaneously, the incre- ment and decrement keys continuously.		Enter Set Valu
AT	 IDD is displayed and, when the finger is released, zero-point adjustment is 		Enter using I In case of
/	completed and the sensor returns to the sensing mode.		sensor, if 🔿 value chang
<u> </u>	 If pressure has been applied during zero- point adjustment, [-] is displayed when 		side by 1 di once the se
	the keys are pressed. Bring the applied pressure to atmospheric pressure (i.e., no	Displayed alternately	low pressure In case of
	applied pressure condition) and carry out the zero-point adjustment once again.		sensor, if 🞑 value chang
2 Initial setti		<u> </u>	side by 1 di once the se
	Init], [Display] and [Output mode] of the		low vacuum • If
	Set to initial setting mode		tinuously, the
0P2-20 - 10.00	• In the sensing mode, press 📾 key while		either UP
<u> </u>	pressing (▲) key. (• Initial setting is displayed.		
	• If sensor is being used for the first time,	Set	• In the Set V
		P - 7	🔤 key.
	Set initial conditions The settable digit blinks.		• P-2 and set a
<i>Pi</i>	 The settable digit blinks. The settable digit changes when key is pressed. 		
	is pressed.	Displayed alternately	
-4.A		<u>- 501</u>	
PE8	 Change the setting of each digit as desired. The setting is changed when		
	pressed.		\bullet
			Enter Set Valu
<i>~~//</i>	Change with 🛆 key.	-10 13	 Using k manner sim Value 1 (D1)
3rd digit	A 2nd digit A 1st digit		Value 1 (P1)
- p -	<u> </u>		either <u>up</u> (lower limit e
Unit	Output mode Display Pa or Hysteresis C Digital Pa G display	Displayed alternately	
, M		072-20	
d U	gf/cm ²		
bestive			
▼ Loss 5: p:	si Automatic sensitivity	If the output mod	te has been so
đ T	setting mode	mode ([) in the Set Value 2 (P2)	e initial setting r
1 E E U: m	-	or more. Howev should be 6 digits	er, when unit is
t essu	Ha		
Aacuum Fressure i in			_
t essu	Set to sensing mode		Set to sensin
t essu	\bullet	[1972-20 -H.267]	
t essu	Set to sensing mode • Press mess meturns to sensing mode after the initial conditions have been set. • Since the initial conditions which have		• Press es ke • The sensor Set Value 1
t essu	Set to sensing mode • Press mess returns to sensing mode after the initial conditions have been set. • Since the initial conditions which have been set are stored in an EEPROM, they are not trased even if the power supply is		Press is ke The sensor Set Value have been s Since the value
t essu	Set to sensing mode Press Key. The sensor returns to sensing mode after the initial conditions have been set. Since the initial conditions which have been set are stored in an EEPROM, they		Press c ke The sensor Set Value have been s

TOTAL VACUUM

o either the hysteresis mode ual output mode (d).

2 (P2)] of the comparativ

th respect to Set Value pressure side in case of nd only towards the high

n pressure type sensor. P2) can be made common er, when a changeover is a setting mode, since Set nake sure to carry out the matic sensitivity mode.

) set mode

mode, press e key. Value 1 (P1) which is being yed alternately. the left shows the display of

ssure type sensor when the has been set to 'kPa'.

I (P1)

1(P1) S key and ♥ key. We positive pressure type key is pressed once the set it and if ♥ key is pressed value changes towards the value changes towards the dide by 1 digit. We vacuum pressure type key is pressed once the set s towards the high vacuum t and if ♥ key is pressed value changes towards the de by 1 digit. ♥ key is pressed con-set value changes quickly. assure range is exceeded, (upper limit exceeded) or limit exceeded) is displayed.

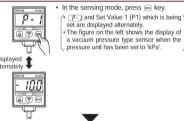
set mode

- ue 1 (P1) set mode, pres
- t Value 2 (P2) which is displayed alternately.

2 (P2)

and () key, enter in a to that for entering Set

- ssure range is exceeded, pper limit exceeded) or []] eeded) is displayed.
- the window comparator de, Set Value 1 (P1) and th a difference of 3 digits set to 'psi', the differenc


ode

- turns to sensing mode after P1) and Set Value 2 (P2)
- es which have been set are EEPROM, they are not if the power supply is

For the case when the output mode is set to automatic sensitivity setting mode (R)

- Comparative outputs' [Set Value 1 (P1)], [Set Value 2 (P2)] and [Set Value 3 (P3)] are set.
- The setting of Set Value 2 (P2) with respect to Set Value 1
- The setting of Set Value 2 (P2) with respect to Set Value 1 (P1) can only be towards the high pressure side in case of the positive pressure type sensor and only towards the high vacuum side in case of the vacuum pressure type sensor.
 Set Value 3 (P3) is automatically set to the mid-value of Set Value 1 (P1) and Set Value 2 (P2). However, if Set Value 0 (P1) is set to a value on the vacuum pressure side for a positive pressure type sensor or to the positive pressure side for a vacuum pressure type sensor. Set Value 3 (P3) is automatically set to the mid-value of 'zero' (atmospheric pressure) and Set Value 2 (P2), Further, if both, Set Value 1 (P1) and Set Value 2 (P2) are set to a value on the vacuum pressure side for a vacuum pressure type sensor. Set Value 3 (P3) is automatically set to 'zero' (atmospheric pressure).
- pressure). The automatically set Set Value 3 (P3) can be changed manually. Since display of error messages is not possible during pressure value setting in the automatic sensitivity setting mode, make sure that the sensor is used within the rated pressure range.

Set to Set Value 1 (P1) set mode P - 1

Enter Set Value 1 (P1)

P -

T

-*1000*

P - 2

splayed t

splayed

played t

- pressure, press ♥ key. The pressure value at the time of pressing ♥ ♥ key is entered as Set Value 1 (P1). Set Value 1 (P1) and P-1 alternately. If the set pressure range is exceeded, either TPP (upper limit exceeded) are displayed and Set Value 1 (P1) is set automatically to the upper or lower limit of the set pressure range. The setting of Set Value 1 (P1) can be repeated several times in the Set Value 1 (P1) set mode.

Set to Set Value 2 (P2) set mode

- In the Set Value 1 (P1) set mode, press e key.
 - P-2 and Set Value 2 (P2) which is being set are displayed alternately.

Enter Set Value 2 (P2) Within the required permissible pressure range, having created a pressure state which is nearest to the high pressure end (for a positive pressure type sensor) or the high vacuum end (for a vacuum pressure type sensor), press a key.

- Value 2 (P2) and (P-2) are displayed alternately. •If the set pressure range is exceeded, either <u>TP</u> (upper limit exceeded) or <u>TP</u> (lower limit exceeded) are displayed and Set Value 2 (P2) is set automatically to the upper or lower limit of the set
- pressure range. The setting of Set Value 2 (P2) can be repeated several times in the Set Value 2 (P2) set mode.

P - -

- <u>75.</u>

side for a vacuum pressure type sensor.

ON

ON

Comparative Output 1 OFF

Output 2 OFF

- 70.0

Set to se

Displayed alternately

Comparativ

Set to Set Value 3 (P3) set mode

In case

In the Set Value 2 (P2) set mode, press

P-3 and the automatically set Set Value 3 (P3) are displayed alternately.

(Digits smaller than the displayed digits) are discarded.

Hysteresis: 1 digit 2 digits when psi unit is used

Set Value 1 (P1) = - 50.0kPa Set Value 2 (P2) = - 100.0kPa Set Value 3 (P3) = $\frac{-50.0 + (-100.0)}{2}$ = -75.0kPa

In case Set Value 3 (P3) is to be changed • The automatically set Set Value 3 (P3) can be manually changed to a value between Set Value 1 (P1) and Set Value 2 (P2). However Set Value 3 (P3) cannot be set to a value on the vacuum pressure side for a positive pressure type sensor or to the positive pressure

Hysteresis

Changeable

0 Set Value 1 (P1) Set Value 2 (P2)

Enter using 🗟 key and 🖲 key.

(* If the set pressure range is exceeded), either <u>UP</u> (upper limit exceeded) or <u>UD</u> (lower limit exceeded) is displayed.

* The sensor returns to the sensing mode after Set Value 1 (P1), Set Value 2 (P2) and Set Value 3 (P3) have been set.

Since the values which have been set are stored in an EEPROM, they are not erased

even if the power supply is switched off.

Set to se

ing mode

Press 🔤 key.

| Press 📾 key

Press 📾 key.

n case of automatic sensitivity setting mode on

Press 📾 key

Sensor enters Set Value 1 (P1) set mode

Set Value 1 (P1) which has been set is displayed and can

Sensor enters Set Value 2 (P2) set mode

Set Value 2 (P2) which has

been set is displayed and can be checked.

Sensor enters Set Value 3 (P3) set mode Set Value 3 (P3) which has

been set is displayed and can be checked.

Sensor returns to sensing mode

Please note that if any key, except except key, is pressed in any setting mode, the set conditions shall get changed.

Set to sensing mode

2 PROCEDURE FOR CHECKING SET VALUES

The conditions which have been set in the initial setting and the

pressure settings can be checked by the following procedure.

(Procedure to check initial conditions) (Procedure to check set values)

sing mode

Press e key while pressing key.

Press 📖 key.

Sensor enters initial setting mode

Initial conditions which have been set are displayed and can be checked.

Sensor returns to sensing mode

Press 📾 key.

CONVERSION OF PRESSURE UNITS

• In the DP2 series, the conversion to different units is automatically done on changing the setting of the pressure unit. However this conversion can also be obtained by multiplying the values by the coefficients given in the following table Conversion procedure

Conversion table for pressure units

	kPa	MPa	kgf/cm ²	bar	psi	mmHg (Torr)	inHg	atm
1kPa	1	1×10-3	1.01972 × 10 ⁻²	1×10 ⁻²	1.45038 × 10-1	7.50062	0.2953	9.86923×10 ⁻³
1MPa	1×103	1	1.01972×10	1×10	1.45038×10 ²	$7.50062 imes 10^{3}$	$0.2953 imes 10^{3}$	9.86923
1kgf/cm ²	9.80665×10	9.80665×10 ⁻²	1	9.80665 × 10 ⁻¹	1.42234×10	$7.35559 imes 10^{2}$	2.8959×10	9.67841×10 ⁻¹
1bar	1×10²	1×10 ⁻¹	1.01972	1	1.45038×10	$7.50062 imes 10^{2}$	2.953×10	9.86923×10 ⁻¹
1psi	6.89473	6.89473×10 ⁻³	7.03065×10 ⁻²	6.89473×10 ⁻²	1	5.17147×10	2.036	6.80457×10 ⁻²
1mmHg (1Torr)	1.33322 × 10 ⁻¹	1.33322×10-4	1.35951 × 10− ³	1.33322×10 ⁻³	1.93368×10 ⁻²	1	3.9370×10 ⁻²	1.31579×10 ⁻³
1inHg	3.3864	3.3864 × 10 ⁻³	3.4531 × 10−2	3.3864 × 10 ^{−2}	0.4912	2.5400×10	1	3.342 × 10 ⁻²
1atm	$1.01325 imes 10^{2}$	1.01325 × 10 ⁻¹	1.03323	1.01325	1.46960×10	$7.60000 imes 10^{2}$	2.9921×10	1

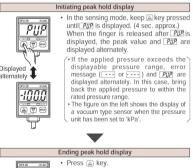
[DP2-20 -10.365]

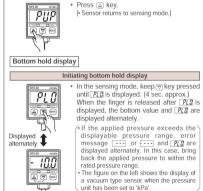
₽

072.00 ______FF

T

Ün


4 PEAK HOLD & BOTTOM HOLD FUNCTIONS | 5 KEY-PROTECT FUNCTION Key-protect is a function which prevents any unintentional change in the conditions which have been entered in each


Peak hold and bottom hold functions enable the display of the Peak hold and bottom hold functions enable the display of the peak value (maximum pressure value in case of the positive pressure type sensor and maximum vacuum pressure value in case of the vacuum pressure type sensor) and the bottom value (minimum pressure value in case of the positive pressure type sensor and minimum vacuum pressure value in Set Value 3 (P3) + High pressure (Positive pressure type) High vacuum (Vacuum pressure type) case of the vacuum pressure type sensor) of the varying In case of a positive pressure type sensor, if (a) key is pressed once, the set measured pressure. These functions are convenient for finding the pressure

variation and or or or determining the reference for pressure settings.

sensor, if ⓐ key is pressed once, the set value changes towards the high pressure side by 1 digit and if [®] key is pressed once, the set value changes towards the low pressure side by 1 digit. In case of a vacuum pressure type sensor, if ⓐ key is pressed once the set value changes towards the high vacuum side by 1 digit and if [®] key is pressed once the set value changes towards the low vacuum side by 1 digit. If @ key or [®] key is pressed conti-nuously, the set value changes quickly. If I the set pressure range is exceeded, · Please note that the peak value and the bottom value data s erased when it is no longer displayed. The response time of the comparative outputs become slower during the peak hold and bottom hold display.

Peak hold display

• Press () key.

PLD

Ending bottom hold display

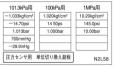
[. Sensor returns to sensing mode.]

setting mode by making the sensor not to respond to the key operations.

Setting of key-protect

 to so-protect mormation is stored in an EEPROM, it is not erased even if the power supply is switched off.
 Please take care to remember if the key-protect function has been set. Since the key-protect information is stored in an EEPROM.

When the keys are to be operated, make sure that key-protect is released.


Release of key-protect

In the sensing mode, press e key continuously for about 3 sec. and release

it immediately when n is displayed.

(• Key-protect is set and the sensor returns)

Key-protect is released and the sensor returns to the sensing mode.

aaa Stick the pressure unit label at the position shown

F

(2) Vacuum Gauge

As mentioned in the previous page, vacuum switch (digital display type) do a role of vacuum gauge. But in general, pump attachable analog type of vacuum gauge is like specification as follows.

Technical Data

품명: Vacuum Gauge & Manometer

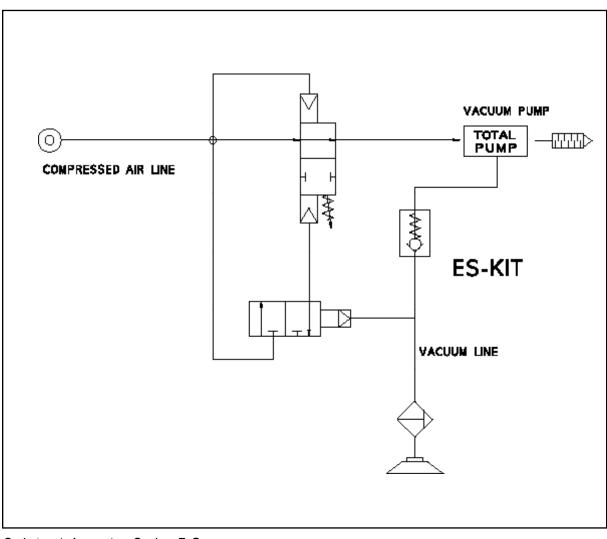
Specification	Vacuum Gauge	Pressure Gauge – Manometer			
MODEL	TVG 40-01	TVP 40-01			
Indication area	0~-100kpa (0~760mmHg.G)	0~1Mpa (0~10kg · f/cm³)			
Precision (%)	2.5	2.5			
Material	Brass, ABS				
Net wt.	59g (nut wt. induded)				

Vacuum Solenoid Valve

Use: Vacuum solenoid valve have various types to control the direction and vacuum 's on-off. This is divided by pneumatic, electric or vacuum operation, and is used mainly by 2, 3, and 5 ways.

Recently, to maintain appropriate vacuum level, servo flow control valve was developed and now it is practical.

For your convenience, you can use direct operation valve, but you d better to select to use depending on leakage levels


Symbol

N.C	₽₽ N.0	3/2 way. valve Vacuum operation : 755mmHg.G 9.9kg · f/cm²	
€∑ []/∰]/∰ Single 5/2	dou ble 5/2	5/2 way. valve Vacuum operation : 755mmHg.G 9.9kg · f/cm²	

Vacuum & Air Energy Saving Kits

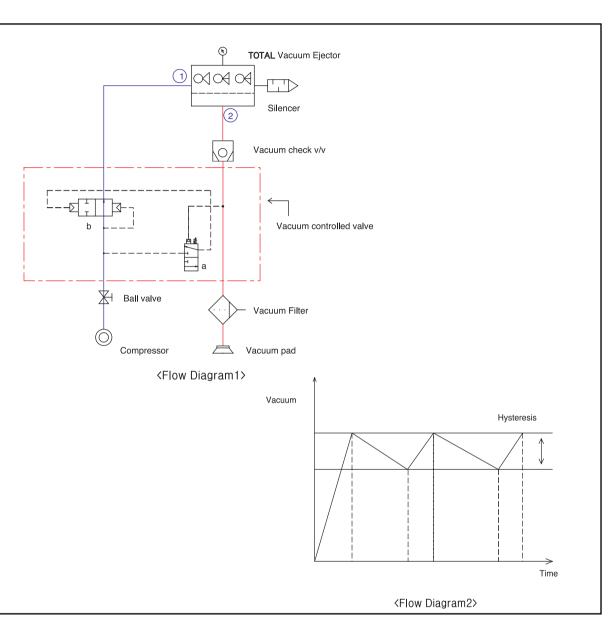
If more than appropriate working vacuum which is established by vacuum switch artificially happen to be made, this Vacuum & Energy Saving Kit cuts supplied compressed air. If the established vacuum level is going down, this device starts supplying again to remove unnecessary compressed air. By this time, vacuum check valve should be set in the pump to maintain the existed vacuum volume (should not be removed) and to use vacuum most efficiently.

Example: Easy Pneumatic Vacuum Pump 's Energy Saving Kit

Ordering Information Code : E.S

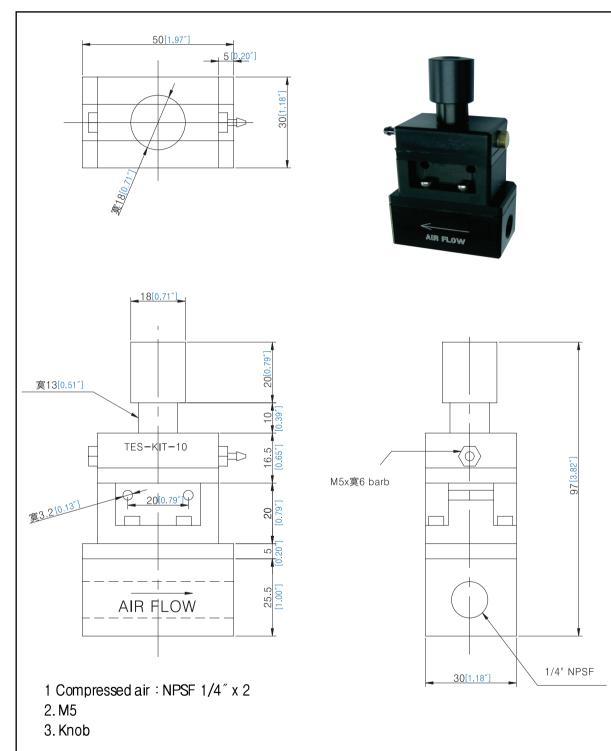
TOTAL ACUUM TECHNOLOG VAC.

Technical Information


(5) Vacuum-Controlled Valve

Integrated vacuum 3/2 way valve, 2/2 way pneumatic valve, and vacuum switch. This device can be applied to various industrial vacuum facilities. This vacuum-controlled valve solved the inconvenient way of using lots of valves and switches together.

Especially, to vacuum ejector, this gives a revolutionary solution as energy saving kits

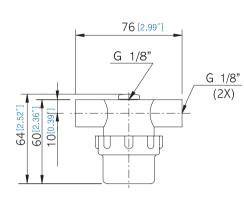

Model	TES-KIT-10A	TES-KIT-10B				
Hysteresis, kpa	2.1 (12.75 mmHg)	6.8 (50 mmHg)				
Consititution	switch, membrane valve, 2/2way valve,3/2 way membrane valve(N.O) Vacuum controlled 2/2 way valve					
Type of control	pneumatic or vacuum					
environment	compressed air, filtration 55μ m, non-lubricated					
Pressure range	3.5~7kg.f/cm²					
Flow	11.8 N ℓ / sec					
working temp.	0°C~+75℃					
Inner Diameter	4.24mm [0.17"]					
Ku	8.85					
Material	AL, EPDM, NBR					
Connections	2×1/4" NPSF , 2×M5 Female					
Net . wt .	219g					

At the beginning, compressed air generated by the compressor is supplied to vacuum generator (1), then generates vacuum, and vacuum pad works normally, then by the setting of vacuum control knob which is placed in the vacuum controlled v/v system. If vacuum level reach up to a certain degree of vacuum, the vacuum creating pilot pressure closes main valve (2/2 way) (b).

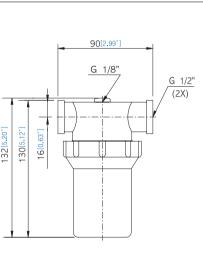
This short time of working is done by the remains of vacuum that is existed so far, so it is not necessary to consume more compressed air. As time goes by, if vacuum is down, again through valve (a)'s operation and then 2/2 way valve (b)'s operation, compressed air goes to vacuum ejector. And then vacuum is created. By repeating this system's flow, we can save about 30%~40% of compressed air. Above picture <Operation Flow Diagram 2> describes the varying vacuum, and shows the number of operations are increasing along with the volume of consumed vacuum.

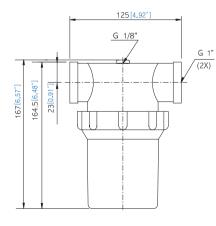
TES-KIT Vacuum-Controlled Valve

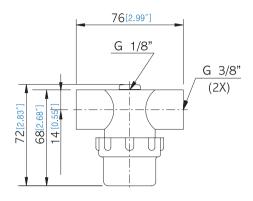
6 Vacuum Filter

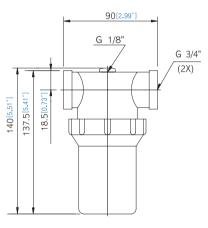


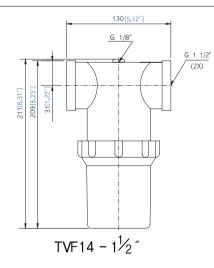
Use : When vacuum pump starts operating, all kinds of gaseous particles, dust, and other kinds of lubricated things are poured into vacuum port at the speed of about 20 m/sec. To filter and remove these odd materials efficiently, it is necessary to use vacuum filter. As the volume of vacuum flow, various kinds of filters are existed, are classified like below.


Model	Port Size	Density	Filter Element	Material	
TVF00-M5	F00-M5 M 5		EFV 0.05	PE. PA. NYLON	
TVF01 - $\frac{1}{8}$ "	<mark>ś</mark> ‴G ¹ ⁄8″ 10		EFV 0.01	PE. PA. NYLON	
TVF02 - 1⁄4 ″	G 1⁄4″	10 micron	EFV 0.02	PE. PA. NYLON	
TVF03 - $\frac{3}{8}''$	$\frac{3}{8}$ G $\frac{3}{8}$ 10 micror		EFV 0.03	PE. PA. NYLON	
TVF04 - $\frac{1}{2}$ "	G 1⁄2″	10 micron	EFV 0.04	PE. PA. NYLON	
TVF06 - 3/4 ″	G ⅔₄″	10 micron	EFV 0.06	PE. PA. NYLON	
TVF10 -1"	TVF 10 - 1" G 1" 10 micron TVF 14 - 1 ^{1/} 2" G 1 ¹ / ₂ " 10 micron		EFV 0.10	PE. PA. NYLON	
TVF 14 - $1\frac{1}{2}$ "			EFV 0.14	PE. PA. NYLON	


Dimension


TVF01-1/8 "


TVF04 - ½ ″

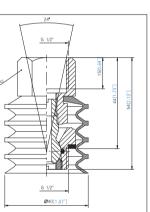

TVF10 - 1 "

7 Ball Joint & Level Compensator

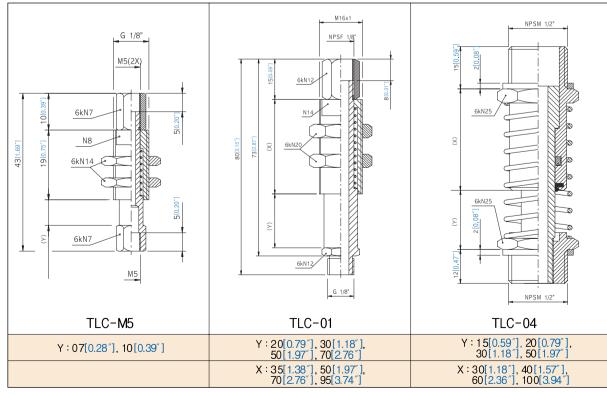
- Ball Joint

Use : When the position of the objects to be handled is different from the level, even if joint (TBJ-Series) that can lift and move the objects without any problems.

Model	Specification						
TBJ01	Material: steel	1⁄8″ NPSF					
	Degree of angular compliance $\pm 12^\circ$ (totally 24°)	1⁄8″ Male					
TBJ04	Material: steel	1/8″ NPSF					
1204	Degree of angular compliance $\pm 12^\circ$ (totally 24°)	1/8" Male					
	2,4	24*					


- Level Compensator

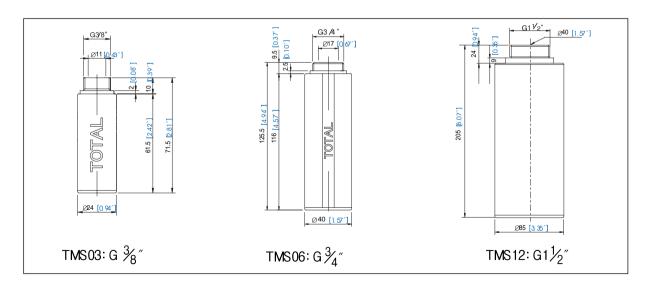
Use : When the objects to be handled are stacked in parallel to the earth, this absorbs the pad's height differences to keep in the definite position. Also provides a certain degree of shock absorption to protect products.


TOTAL VACUUM TECHNOLOGY

the object has the angular difference, $\pm 12^{\circ}$ with vacuum pad, it is the TOTAL ball

Model	Specificaton	Stroke	Remarks		
TLC-M5-07	Port size: M5 (Female : Male)	0~7 mm [0.28″]	Use for suction cup up to Ø 2~30 [Ø0.08"~1.18"]		
TLC-M5-10	Material: steel Max. load: 3.2kg	0~10 mm [0.39″]			
TLC-01-20		0~20 mm [0.79″]			
TLC-01-30	Port size: 1/6" NPSF G1/6"	0~30 mm [1.18″]	Use for suction cup up to Ø 10 ~1 10 [Ø0.39 "~4.33 "]		
TLC-01-50	Material: steel Max. load: 24kg	0~50 mm [1.97″]			
TLC-01-70		0~70 mm [2.76″]			
TLC-04-15		0~15 mm [0.59″]	Use for suction c up up to		
TLC-04-20	Port size: 1/2" Female G1/6" Male	0~20 mm [0.79″]			
TLC-04-30	Material: steel Max. load: 61.4kg	0~30 mm [1.18″]	Ø50~300 [Ø1.97″~11.81″]		
TLC-04-50		0~50 mm [1.97″]			
Option	Possible to be made for the user's request by metric, U.S. Imperial, PT, PF, NPT, screw thread, stroke, etc				

Plan & Dimension



8 Silencer

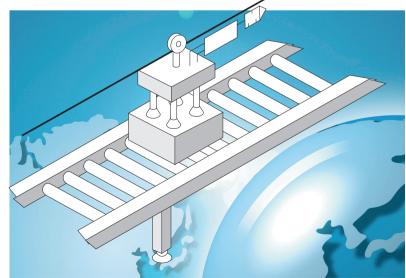
Round silencer is defined by external architecture and internal absorption material. Our products use special foams as internal absorption material, and show a good performance as vacuum and pneumatic pump's silencer

Model	Port size	Specification & Remarks			
TMS01	NPSF 1/8"	I.D ÷ 6.5¢			
TMS02	g 1⁄4″	I. D : 7. 1 ¢	Noise Diminution: -10d BA		
TMS03	G 3/8″	I. D:11 Ø	Material: PA, PE, PH		
TMS06	G 3⁄4″	I. D:17	Working Temp. :		
TMS12	G 1 ½″	I. D : 40 <i>¢</i>			

Technical Information

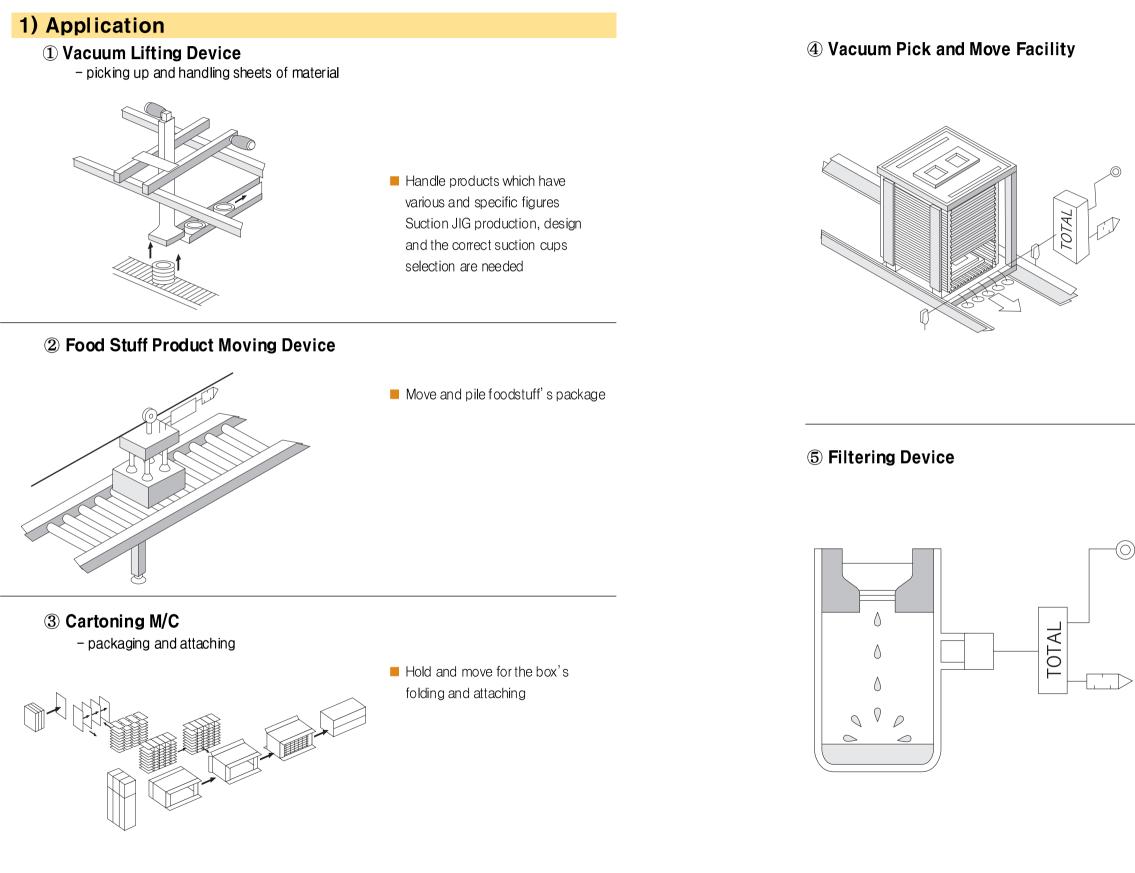
2)Chemical Resistance Data

Resistance of various materials

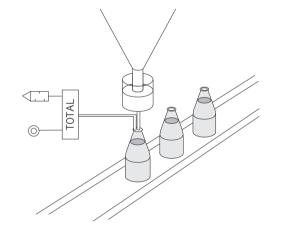

Resistance	ΡΑ	PPS	РОМ	ABS	PTEE	AL	Nitrile rubber NBR	EPDM rubber	Viton rubber
Ozone (O3)	_	A	С	В	A	В	С	А	A
Oil, petrol	В	А	В	С	А	С	A	_	А
Hydrolysis	_	A	В	С	A	А	В	В	В
Ferrous Sulfate (Fe SO4)	А	А	Α	С	Α	_	Α	А	A
Acid and alkali	С	A	С	_	Α	_	В	А	В
Acetone (CH3COCH3)	А	А	Α	-	A	А	_	А	_
Ammonia	С	В	_	_	Α	В	С	А	_
Amyl alcohol	А	A	Α	_	A	В	В	А	В
Benzene(CaHa)	А	A	Α	_	A	В	-	-	Α
Butane (C4H10)	_	А	Α	Α	A	В	В	В	Α
Freon13 (CICF3)	В	A	В	В	A	_	-	А	Α
Cyclohexane	А	A	А	_	Α	А	В	_	А
Ethanol	А	А	Α	В	A	В	С	А	A
Ethyl acetate	А	A	Α	_	A	В	_	В	_
Hexane	В	А	А	-	A	А	Α	-	Α
n-Octane (C ₈ H ₁₈)	В	А	В	В	A	_	Α	_	A
Carbon tetrachlonide	_	А	В	-	A	_	-	-	Α
Chloro benzene	_	A	_	_	A	А	-	-	А
Chloroform	А	A	Α	_	A	С	-	-	Α
Methanol	В	А	А	-	A	А	A	А	С
Zinc chloride (ZnCk)	В	В	В	В	A	В	В	А	Α
Methylene chlonde	С	A	В	-	A	С	-	В	А
Methyl ethyl ketone, MEK	А	А	С	_	A	В	-	А	
Sodium Hydroxide (NaOH)	А	A	С	С	A	_	В	А	В
Sulfuric Acid25% (H2SO4)	С	С	А	В	A	_	В	В	А
Propanol	_	А	А	В	A	В	A	А	А
Sulpuric acid	_	А	_	В	A	_	С	В	А
Tetrahydrofuran	А	А	А	_	A	_	-	В	_
Table salt (Nacl)	А	A	Α	А	A	В	A	A	A
Tetrachlorethylene	А	А	Α	_	A	_	-	_	Α
Toulene	А	A	С	-	A	А	-	_	Α
Ethyl Bromide (CH ₂ CH ₂ Br)	А	В	В	В	А	_	В	В	_
Trichlorethane	С	А	А	_	A	_	-	-	A
Trichlorethylene	С	А	-	_	А	_	_	_	A
Xylene CiH4(CH3)2	А	A	А	_	A	В	_	_	A
Acetic acid	_	A	_	_	A	С	С	A	В
Nitric Acid 25% (HNO3)	_	-	С	С	А	_	С	В	A

A : Excllent B : Good C : Limited

- : Unsuitable

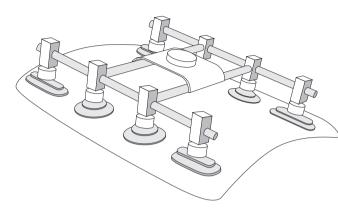


	206
ition	
uum Lifting Device	
d Stuff Product Moving Device	
coning M/C	
uum Pick and Move Facility	
ring Device	
elling M/C	
uum Filling M/C	
uum Holding M/C	
caved Sheets Moving Device	
uum Bearing	
y Milking Machine	
ning Machine	
uum Table and Inspection Equipment	
uum Forming (vacuum servo control)	
uum Casting (vacuum servo control)	

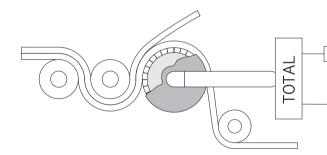

Pick specific parts and move to the 2nd or 3rd line.

Due to sufficient vacuum flow, can shorten filtering time and can get more purified liquid.

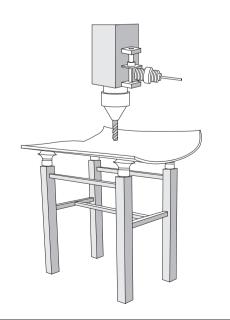
6 Labelling M/C


Automatic attaching label on the side of bottle After striping label by the stripper, labels holding by vacuum are put on the bottle by the roller.

⑦ Vacuum Filling M/C



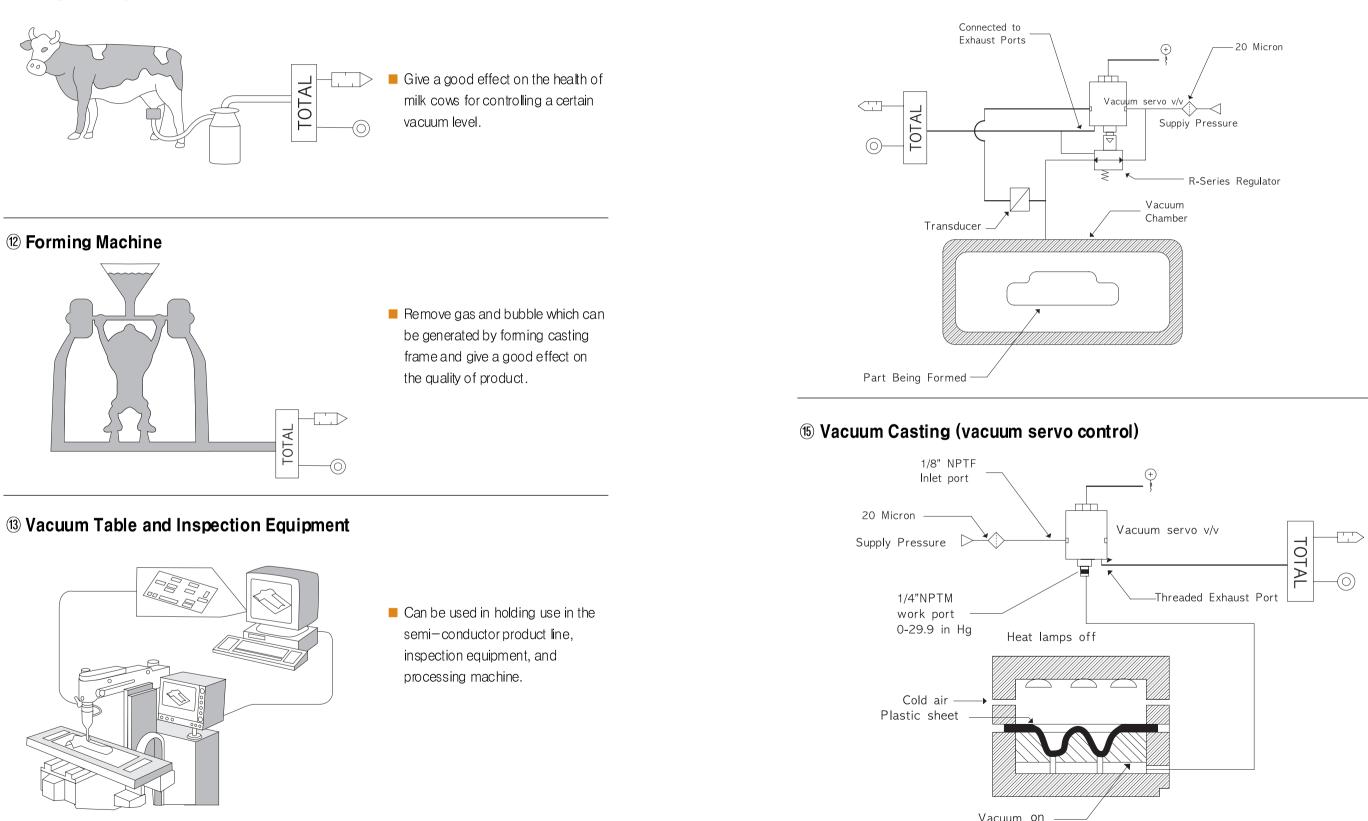
Discard generated bubbles when filling liquid of cosmetics, pharmacy and food, Fill them quickly.

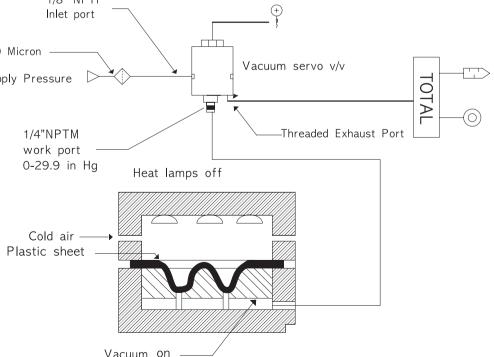

(9) Concaved Sheets Moving Device

10 Vacuum Bearing

⑧ Vacuum Holding M/C

When manufacturing furniture, woods, glasses, etc, prevent them from moving in the wrong position, overcome vibrations, and can make it easy to be attached after process.


208 TOTAL VAC.



When the objects has uneven concave surface, the system can be designed to make it possible to use.

With vacuum rotary joint, prevent film from separating for giving consistent tension to the film to be carried. (1) Dairy Milking Machine

(14) Vacuum Forming (vacuum servo control)

Vacuum on

Technical Information

Chap.7 **Customer Supporting Center**

1) Web Site: www.totalvac.co.kr / www.titanvac.com for Internet Consulting Service and Resource Support

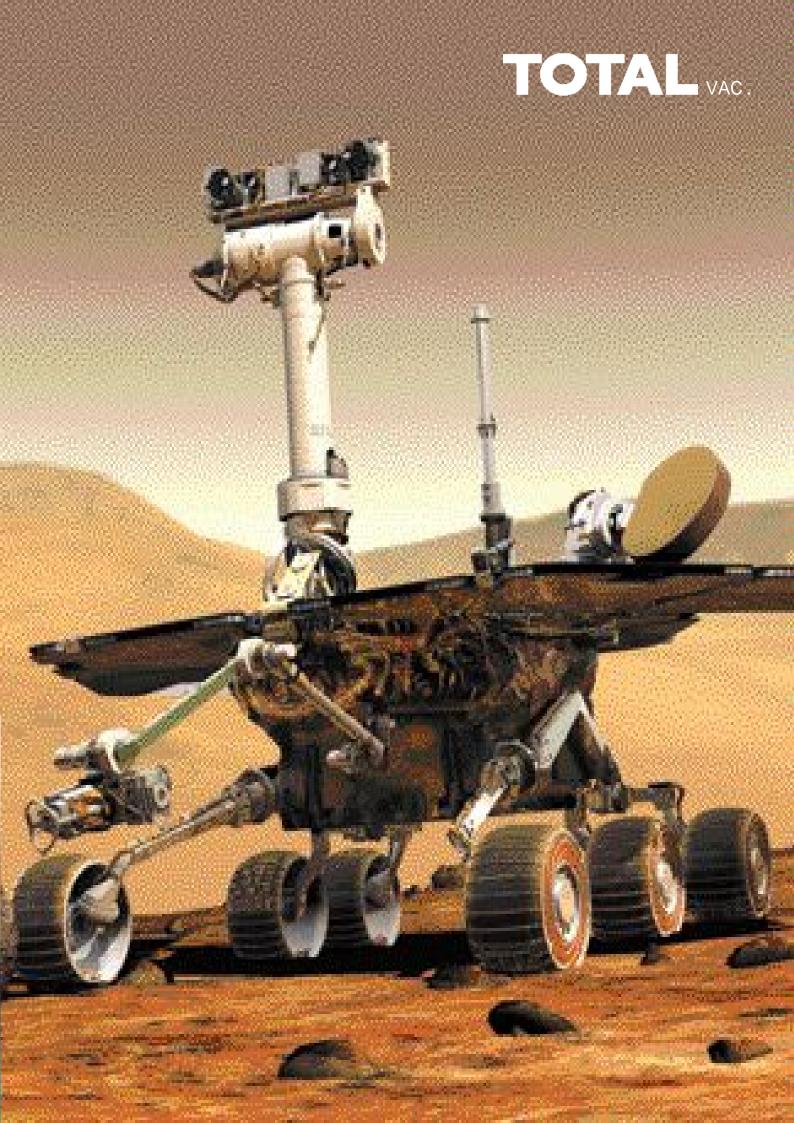
2) Vacuum Pump System Design Support and Technical Assistance

Qualified Engineering Sales to Support Essentially for Your Operating Field System Offering Education Program for the Charged Personnel to Design and Maintain Facilities Faithful Consulting through Telephone, Fax, and Homepage Bulletin Board

3) After Service (A/S) Center

Prompt Reply within 24~48 Hours when You Call for A/S and Technical Support Call to Our Head quarters Emergency Task Force System Tel: 82-51-313-5531 Fax: 82-51-324-8019 Local A/S Center Pls. Refer to Our Web Site www.totalvac.co.kr/www.titanvac.co.kr TOTAL Vac. USA Co. Tel:1-818-441-2079 Fax:1-909-989-2027

4) Warranty Policy


Free of Charge Warranty A 3-year free of charge warranty for vacuum pumps but user 's carelessness A guarantee period of 1 year for consumptive accessories

Parts Supply Policy and User 's Responsibility Regulation Continuously produce and supply spare parts for 7 years from the date of delivery In case of user's carelessness, intended damage, loss, and unsuitable filter use (can cause strange substances input, etc), you can not receive free of charge warranty.

Free of Charge A/S

5-year free of charge A/S and no charge for spare parts within 1 year from the date of delivery

TOTAL VACUUM PUMP

